Overview

Some Background on Probability (Blackboard)

Historical Background I: Carnapian Confirmation Theory
- Confirmation, “Logical” Probability, and Relevance

Historical Background II: Bayesian Confirmation Theory
- Confirmation and Subjective Probabilistic Relevance

Applying Bayesian Confirmation to the “Conjunction Fallacy”
- The Traditional “Conjunction Fallacy” Cases
- A Confirmation-Theoretic Approach to the Traditional CFs
- Non-Traditional CFs and Bayesian Confirmation Theory

In the first edition of LFP, Carnap [3] undertakes a precise probabilistic explication of the concept of confirmation. This is where modern confirmation theory was born (in sin).

Carnap was interested mainly in quantitative confirmation (which he took to be fundamental). But, he also gave (derivative) qualitative and comparative explications:
- Qualitative. *E* inductively supports *H*.
- Comparative. *E* supports *H* more strongly than *E’* supports *H’*.
- Quantitative. *E* inductively supports *H* to degree *r*.

Carnap begins by clarifying the explicandum (the informal “inductive support” concept) in various ways, including:
- Qualitative. (*) *E* gives some (positive) evidence for *H*.
- Comparative. *E* supports *H* more strongly than *E’* supports *H’*.
- Quantitative. *E* inductively supports *H* to degree *r*.

Note two things. First, (⋆) sounds epistemic (not logical). Second, (⋆) sounds like it involves (positive) relevance.

Strangely, Carnap proceeds (in LFP1) to offer a logical account of confirmation that does not involve relevance.

These were the two original sins of Bayesian confirmation...
In the 1st ed. of LFP, Carnap characterizes “the degree to which E confirms H” as $c(H,E) = Pr(H | E)$, which leads to:

- Quantitative. $Pr(H | E) = r$.
- Comparative. $Pr(H | E) > Pr(H' | E')$.
- Qualitative. $Pr(H | E) > t$ (typically, with “threshold” $t > \frac{1}{2}$).

- Doesn’t sound like $(*)$. More on this dissonance below.

- Like Hempel [8], Carnap wanted a logical explication of confirmation (as a relation between sentences in FO Łs).

- For Carnap, this meant that the probability functions used in confirmation theory must themselves be logical”.

- This leads naturally to the Carnapian project of providing a “logical explication” of conditional probability $Pr(\cdot | \cdot)$ itself.

- Here, Carnap was strongly influenced by Keynes [10], who believed there were (probabilistic) “partial entailments”. I’m somewhat skeptical [6] (as are most modern Bayesians).

- Hempel’s theory of confirmation [8] satisfies the following:

 (SCC) If E confirms H, then E confirms all consequences of H.

In LFP1, Carnap describes a counterexample to Hempel’s (SCC), which presupposes a more $(*)$-like qualitative conception of confirmation. There, he presupposes:

- Qualitative. E confirms H iff $Pr(H | E) > Pr(H)$.

- This probabilistic relevance conception violates (SCC), whereas the previous Pr-threshold conception implies (SCC).

- Popper [12] notes this tension in LFP. Largely in response to Popper, Carnap wrote a second edition of LFP [2], which includes a preface acknowledging an “ambiguity” in LFP1:

 - Firmness. The degree to which E confirms H:

 $$c_f(H, E) = Pr(H | E).$$

 - Increase in Firmness. The degree to which E confirms H:

 $$c_i(H, E) = f[Pr(H | E), Pr(H)]$$

 f measures “the degree to which E increases the Pr of H.”

- The 1st ed. of LFP was mainly about firmness, and the 2nd edition only adds the preface, which says very little about c_i. Specifically, no function f is rigorously defended there.

ci is more similar to $(*)$ than cf is. To see this, note that we can have $Pr(H | E) > t$ even if E lowers the probability of H.

Example: Let H be the hypothesis that John does not have HIV, and let E be a positive test result for HIV from a highly reliable test. Plausibly, in such cases, we could have both:

- $Pr(H | E) > t$, for just about any threshold value t, but
- $Pr(H | E) < Pr(H)$, since E lowers the probability of H.

So, if we adopt Carnap’s cf-explication, then we must say that E confirms H in such cases. But, in $(*)$-terms, this implies E provides some positive evidential support for H!

I take it we don’t want to say that. Intuitively, what we want to say here is that, while H is (still) highly probable given E, (nonetheless) E provides (strong!) evidence against H.

Carnap [2] seems to appreciate this dissonance, when he concedes ci is (in some settings) “more interesting” than cf.

Contemporary Bayesians would agree with this. They’ve since embraced a probabilistic relevance conception [13].
Bayesianism is based on the assumption that the degrees of belief (or credences) of rational agents are probabilities.

Let \(\Pr(H) \) be the degree of belief that a rational agent \(a \) assigns to \(H \) at some time \(t \) (call this \(a \)’s “prior” for \(H \)).

Let \(\Pr(H \mid E) \) be the degree of belief that \(a \) would assign to \(H \) (just after \(t \)) were \(a \) to learn \(E \) at \(t \) (\(a \)’s "posterior" for \(H \)).

Toy Example: Let \(H \) be the proposition that a card sampled from some deck is a ♠, and \(E \) assert that the card is black.

Making the standard assumptions about sampling from 52-card decks, \(\Pr(H) = \frac{1}{4} \) and \(\Pr(H \mid E) = \frac{1}{2} \). So, learning that \(E \) raises the probability one (rationally) assigns to \(H \).

Following Popper [12], Bayesians define confirmation in a way that is formally very similar to Carnap’s \(c_i \)-explication.

For Bayesians, \(E \) confirms \(H \) for an agent \(a \) at a time \(t \) iff \(\Pr(H \mid E) > \Pr(H) \), where \(Pr \) captures \(a \)’s credences at \(t \).

While this is formally very similar to Carnap’s \(c_i \), it uses credences as opposed to “logical” probabilities [13], [6].

When it comes to quantitative judgments, Bayesians use various relevance measures \(\epsilon \) of degree of confirmation.

These are much like the candidate functions \(f \) we saw in connection with Carnapian \(c_i \), but defined relative to subjective probabilities rather than “logical” probabilities.

There are many comparatively distinct measures. See [5] and [17] for philosophical and psychological discussion.

Once we choose a measure \(\epsilon(H, E) \) of the degree to which \(E \) confirms \(H \), we can explicate comparative confirmation relations. E.g., \(E \) favors \(H_1 \) over \(H_2 \) iff \(\epsilon(H_1, E) > \epsilon(H_2, E) \).

Note: \(\Pr(H \mid E) \) is a bad candidate for \(\epsilon(H, E) \) in this context. It implies “\(E \) favors \(H_1 \) over \(H_2 \),” in some cases where \(E \) is negatively relevant to \(H_1 \) but positively relevant to \(H_2 \) [12]!

In the context of comparative confirmation, there is ongoing philosophical/theoretical debate about the appropriate choice of \(\epsilon \) (e.g., the Likelihoodism debate [7]).

An account is robust if it does not depend on choice of \(\epsilon \).

Tversky and Kahneman [19] discuss the following example, which was the first example of the “conjunction fallacy”:

\((E) \) Linda is 31, single, outspoken and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice and she also participated in antinuclear demonstrations.

Is it more probable, given \(E \), that Linda is \((H_1) \) a bank teller, or \((H_1 \text{ and } H_2) \) a bank teller and an active feminist?

Most say “\(H_1 \) and \(H_2 \)” is more probable (given \(E \)) than \(H_1 \). On its face, this violates comparative probability theory, since \(X \equiv Y \) implies \(\Pr(X \mid E) \leq \Pr(Y \mid E) \), and \(H_1 \text{ and } H_2 \equiv H_1 \).

Experiments have been done to ensure subjects understand “\(H_1 \) and \(H_2 \)” in the experiment as a conjunction \(H_1 \text{ and } H_2 \), and \(H_1 \) as a conjunct thereof (not as \(H_1 \text{ and } \sim H_2 \) [15, 16].

At the same time, the “fallacy” persists when people are queried about betting odds rather than probabilities [15, 1].

Comparative Bayesian confirmation can be helpful [11]. We’re developing detailed accounts along these lines [4].
The "Fallacy" References

- It is possible to have $c(H_1 \& H_2, E) > c(H_1, E)$ even though $H_1 \& H_2 \models H_1$. And, intuitively, this is true in the Linda case.
- As Tversky & Kahneman themselves [19] say: "feminist bank teller is a better hypothesis about Linda than bank teller".
- Comparative Bayesian confirmation theory can explain why:

Theorem. For all Bayesian relevance measures c, if

(i) $c(H_2, E \mid H_1) > 0$ and
(ii) $c(H_1, E) \leq 0$

then $c(H_1 \& H_2, E) > c(H_1, E)$.

Here, $c(H_2, E \mid H_1)$ is the degree to which E confirms H_2 (according to c) given that the agent already knows H_1.

A logically weaker pair suffices for $c(H_1 \& H_2, E) > c(H_1, E)$.

Here is a sharper theorem (based on the (WLL) in [9]):

Theorem. For all Bayesian relevance measures c, if

(i) $Pr(E \mid H_1 \& \sim H_2) < Pr(E \mid H_1 \& H_2)$ and
(ii*) $Pr(E \mid H_1 \& \sim H_2) \leq Pr(E \mid \sim H_1)$,

then $c(H_1 \& H_2, E) > c(H_1, E)$.

Here is a non-traditional CF example: $E = \text{John is Scandinavian}; H_1 = \text{John has blue eyes}; H_2 = \text{John has blond hair}$.

In this case, (i) seems plausible, but (ii)/(ii*) do not.

Moreover, it is not at all clear whether this is (normatively) a case in which we should have $c(H_1 \& H_2, E) > c(H_1, E)$.

Descriptively, we suspect confirmation-theoretic relations between H_1 and H_2 themselves may be involved in the CF.

Specifically, the terms $c(H_i, H_j)$ seem to be salient. We bet they are explanatorily relevant. There is some preliminary evidence which supports this conjecture [18].

Psychologically, we think there are two important sets of confirmation-theoretic factors involved in CF cases:

- $c(H_1, E), c(H_2, E), c(H_1, E \mid H_2), c(H_2, E \mid H_1)$. [Traditional CF]
- $c(H_1, H_2), c(H_2, H_1), c(H_1, H_2 \mid E), c(H_2, H_1 \mid E)$. [NT CF]

More general confirmation-theoretic models have recently been developed which seem to subsume and explain all known instances of the "conjunction fallacy" [18].

References