General Background Representing \succeq , \succ and Epistemic Foundations for

Toward an Epistemic Foundation for Comparative Confidence

Branden Fitelson ¹ David McCarthy ²

¹Philosophy & RuCCS @ Rutgers

MCMP @ LMU branden@fitelson.org

> ²Philosophy @ HKU mccarthy@hku.hk

Fitelson & McCarthy

General Background

Toward an Epistemic Foundation for Comparative Confidence

• Aim: give *epistemic justifications* of coherence requirements for \succeq that have appeared in the contemporary literature.

- **Means**: exploit a generalization of Joyce's non-pragmatic argument for probabilism [18, 19]. Note: something similar has already been done for full belief [10, 1, 8, 13].
- Joyce was inspired by an elegant geometrical argument of de Finetti [5] (see Extras). However, unlike de Finetti, Savage, et. al. [24, 15, 17] Joyce's approach is epistemic in nature.
- Abstracting away from Joyce's argument, we have developed a *framework* [13] for grounding epistemic coherence requirements for judgment sets $\mathbf{J} = \{j_1, \dots, j_n\}$ (of type \mathfrak{J}) over agendas of propositions $\mathcal{A} = \{p_1, \dots, p_n\}$.
- Applying our framework involves three steps.
 - **Step 1**: Identify a precise sense in which individual judgments j of type J can be (qualitatively) *inaccurate* (or alethically defective/imperfect) at a possible world w.

• The contemporary literature focuses mainly on two types of non-comparative judgment: belief and credence. Not much attention is paid to *comparative* judgment (but see [16]).

Epistemic Foundations for 2

- It wasn't always thus. Keynes [21], de Finetti [3, 4] and Savage [24] all emphasized the importance (and perhaps even fundamentality) of comparative confidence.
- *Comparative confidence* is a three-place relation between an agent S (at a time t) and a pair of propositions $\langle p, q \rangle$.
- We'll use $\lceil p \geq q \rceil$ to express this relation, *viz.*, $\lceil S$ is at least as confident in the truth of p as she is in the truth of q^{γ} .
- It is difficult to articulate the meaning of \succeq without somehow implicating that it essentially involves some *non-comparative* judgments [e.g., $b(p) \ge b(q)$].
- But, it's important to think of \succeq as *autonomous* and *irreducibly comparative* - *i.e.*, as a kind of comparative judgment that may not reduce to anything non-comparative.

Fitelson & McCarthy

General Background

Toward an Epistemic Foundation for Comparative Confidence

General Background

Epistemic Foundations for ≥

- **Step 2**: Define an *inaccuracy score* i(j, w) for individual judgments j of type J. This is a numerical measure of how inaccurate (in the sense of Step 1) j is (at w). For each set $J = \{j_1, \dots, j_n\}$, we define its *total inaccuracy* at w as the *sum* of the *i*-scores of its members: $\mathcal{I}(\mathbf{J}, w) \stackrel{\text{def}}{=} \sum_{i} i(j_i, w)$.
- **Step 3**: Adopt a fundamental epistemic principle, which uses I(J, w) to ground a (formal, synchronic, epistemic) coherence requirement for judgment sets J of type J.
- In the case of Joyce's argument for probabilism, we have:

Step 1: ${}^{r}b(p) = r^{r}$ is *inaccurate* at w just in case r differs from the value assigned to p by the *indicator function* $v_w(p)$, which is 1 (0) if p is true (false) at w.

Step 2: i(b(p), w) is (squared) *Euclidean distance* (or Brier score) between b(p) and $v_w(p)$. $I(b, w) = \sum_i i(b(p_i), w)$.

Step 3: The fundamental epistemic principle: b shouldn't be *weakly dominated* (by any b'), according to $I(\cdot, w)$.

• Today: we apply the framework to *comparative confidence*.

- We begin with some background assumptions about \succeq .
- Our first assumption is that our agents S form comparative confidence judgments \succeq regarding all pairs of propositions on some m-proposition $agenda \ \mathcal{A}$, drawn from some n-proposition Boolean algebra $\mathcal{B}_n \ (m \le n, \ viz., \ \mathcal{A} \subseteq \mathcal{B}_n)$.
- Our second assumption is that \succeq is a *total preorder* on \mathcal{A} , *i.e.*, \succeq satisfies the following conditions, for all $p, q, r \in \mathcal{A}$.

Totality.
$$(p \ge q) \lor (q \ge p)$$
.

Transitivity. If
$$p \ge q$$
 and $q \ge r$, then $p \ge r$.

- *Global* versions of these are controversial [14, 12, 23]. We're only assuming *local* versions of them (for *some* agendas \mathcal{A}).
- Once we've got a total preorder \succeq on \mathcal{A} , we can then define a "strictly more confident than" relation on \mathcal{A} , as follows.

$$p \succ q \stackrel{\text{def}}{=} p \succeq q \text{ and } q \not\succeq p.$$

• Because \succeq is a total preorder on \mathcal{A} , it will follow that \succ is an *asymmetric, transitive, irreflexive* relation on \mathcal{A} .

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

5

ullet We can also define an "equally confident in" (or "epistemically indifferent between") relation on $\mathcal A$, as:

$$p \sim q \stackrel{\text{def}}{=} p \succeq q \text{ and } q \succeq p.$$

- Since \succeq is a total preorder, \sim is an *equivalence relation*.
- Next, we'll assume our agents *S* are *logically omniscient*.
 - (LO) *S* respects all logical equivalencies.
 - \square If p, q are logically equivalent, then S judges $p \sim q$. And, if S judges p > q, then p, q are *not* logically equivalent.
- Finally, we'll assume our agents *S* have *regular* \succeq -orderings. **Regularity**. If *p* is contingent, then $p \succ \bot$ and $\top \succ p$.
- We can represent \succeq -relations on agendas \mathcal{A} via their 0/1 adjacency matrices A^{\succeq} , where $A_{ij}^{\succeq} = 1$ iff $p_i \succeq p_j$.
- Toy example: let $\mathcal{A} = \mathcal{B}_4$ be the smallest sentential BA, with four propositions $\langle \top, P, \neg P, \bot \rangle$, for some contingent P. Specifically, interpret P as "a tossed coin lands heads."

Fitelson & McCarthy

General Background

Toward an Epistemic Foundation for Comparative Confidence

c

- The above figure shows the adjacency matrix and graphical representation of a relation (\succeq) on \mathcal{B}_4 . This relation \succeq is *supported by S's evidence E*, **if** *E* says that the coin is *fair*.
- Consider an alternative relation (\succeq') on \mathcal{B}_4 , which agrees with \succeq on all judgments, *except for* $\neg P \succeq P$. That is, $P \succ' \neg P$; whereas, $P \sim \neg P$. [\succeq' is depicted on the next slide.]

0 0

- This alternative relation \succeq' on \mathcal{B}_4 is supported by S's evidence E, **if** E says that the coin is biased toward heads.
- Intuitively, neither ≥ nor ≥' should be deemed (formally)
 incoherent. After all, either could be supported by an agent's
 evidence. We'll return to evidential requirements for
 comparative confidence relations below. Meanwhile, Step 1.

- **Step 1** involves articulating a precise sense in which an individual comparative confidence judgment $p \geq q$ is inaccurate at w. Here, we follow Joyce's [18, 19] extensionality assumption, which requires "inaccuracy" to supervene on the truth-values of the propositions in A at w.
- An individual comparative confidence judgment $p \geq q$ is inaccurate at w iff $p \geq q$ entails that the ordering \geq fails to rank all truths strictly above all falsehoods at w.1
 - On this conception, there are *two facts* about the inaccuracy of individual comparative confidence judgments $p \geq q$.
 - **Fact 1.** If $q \& \neg p$ is true at w, then p > q is inaccurate at w.
 - **Fact 2.** If $p \not\equiv q$ is true at w, then $p \sim q$ is inaccurate at w.

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

Epistemic Foundations for ≥

Epistemic Foundations for ≥

• **Step 3** involves the adoption of a *fundamental epistemic* principle. Here, we will follow Joyce and adopt:

Weak Accuracy-Dominance Avoidance (WADA). ≥ should not be weakly dominated in inaccuracy (according to 1). More formally, there should *not* exist a \succeq' (on \mathcal{A}) such that

- (i) $(\forall w) [\mathcal{I}(\succeq', w) \leq \mathcal{I}(\succeq, w)]$, and
- (ii) $(\exists w) [\mathcal{I}(\succeq', w) < \mathcal{I}(\succeq, w)].$
- Recall our toy relations \succeq and \succeq' over \mathcal{B}_4 . Neither of these relations should be ruled-out as incoherent, as each could be supported by *some* body of evidence [19, pp. 282-3].
- **Theorem**. Neither \succeq nor \succeq' is weakly dominated in *I-inaccuracy* — by **any** binary relation on \mathcal{B}_4 .
 - This result is a corollary of our Fundamental Theorem, which will also explain why we were forced to assign an inaccuracy score of *exactly 2* to inaccurate \succ judgments.
 - More on that later. Meanwhile, a historical interlude.

• Step 2 requires a *point-wise* inaccuracy measure $i(p \geq q, w)$.

Epistemic Foundations for ≥

- There are two kinds of inaccurate ≥-judgments (Facts 1 and 2). Intuitively, these two should kinds of inaccuracies should not receive equal i-scores. Mistaken > judgments should receive *greater i-scores* than mistaken ~ judgments.
- How much more inaccurate than ~ mistakes are > mistakes? *Twice as inaccurate!* Suppose (by convention) that we assign an i-score of 1 to mistaken \sim judgments. We *must* (!) assign an i-score of 2 to mistaken \succ judgments.

$$i(p \ge q, w) \stackrel{\text{def}}{=} \begin{cases}
2 & \text{if } q \& \neg p \text{ is true at } w, \text{ and } p > q, \\
1 & \text{if } p \ne q \text{ is true at } w, \text{ and } p \sim q, \\
0 & \text{otherwise.}
\end{cases}$$

• \succeq 's total inaccuracy (on \mathcal{A} at w) is the sum of \succeq 's i-scores.

$$\mathcal{I}(\succeq, w) \stackrel{\mathrm{def}}{=} \sum_{p,q \in \mathcal{A}} \mathfrak{i}(p \succeq q, w).$$

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

- Various coherence requirements for \geq have been discussed [15, 2, 26]. We'll focus on a particular family of these.
- We begin with the fundamental requirement (\mathbb{C}), which has (near) universal acceptance. We will state (\mathbb{C}) in two ways: axiomatically, and in terms of numerical representability.
 - (\mathbb{C}) S's \succeq -relation (assumed to be a total preorder on \mathcal{B}_n) should satisfy the following two axiomatic constraints:
 - $(A_1) \quad \top \succ \bot$.
 - (A₂) For all $p, q \in \mathcal{B}_n$, if p entails q then $q \succeq p$.
- A plausibility measure (a.k.a., a capacity) on a Boolean algebra \mathcal{B}_n is real-valued function PI: $\mathcal{B}_n \rightarrow [0,1]$ which satisfies the following three conditions [15, p. 51]:
 - $(Pl_1) Pl(\bot) = 0.$
 - (Pl₂) $Pl(\top) = 1$.
 - (Pl₃) For all $p, q \in \mathcal{B}_n$, if p entails q then $Pl(q) \ge Pl(p)$.

11

¹One might be tempted by a weaker (and "more Joycean") definition of inaccuracy, according to which $p \geq q$ is inaccurate iff it *contradicts* the comparison $p \succeq_w q$ induced by the indicator function v_w . This weaker definition (which also deems p > q inaccurate if $p \equiv q$ is true at w) is untenable for us. This will follow from our Fundamental Theorem, below.

- Two kinds of representability of \succeq , by a real-valued f.
 - \succeq is *fully* represented by $f \leq f$ for all $p, q \in \mathcal{B}_n$

$$p \succeq q \iff f(p) \geq f(q)$$
.

• \succeq is *partially* represented by $f \triangleq$ for all $p, q \in \mathcal{B}_n$

$$p > q \Longrightarrow f(p) > f(q)$$
.

- Now, (C) can be expressed equivalently, as follows:
 - (\mathbb{C}) S's \succeq -relation (assumed to be a total preorder on \mathcal{B}_n) should be fully representable by some plausibility measure.
- **Theorem 1.** (WADA) entails (C). [See Extras for a proof.]
 - There are several other coherence requirements for \succeq that can be expressed both axiomatically, and in terms of numerical representability by some real-valued f.
 - We'll state these, and say whether or not they follow from (WADA). The next requirements involve belief functions.

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

Representing \succeq , \succ and \sim

Epistemic Foundations for ≥

- (\mathbb{C}_1) S's \succeq -relation (assumed to be a total preorder on \mathcal{B}_n) should be *fully* representable by a belief function.
- As it turns out [26], a relation \succeq is fully representable by some belief function if and only if \succeq satisfies (A₁), (A₂), and
 - (A₃) If p entails q and $\langle q, r \rangle$ are mutually exclusive, then:

$$q \succ p \Longrightarrow q \lor r \succ p \lor r$$
.

- \bullet (WADA) also entails (A₃). That is, we have the following:
 - **Theorem 3**. (WADA) entails (\mathfrak{C}_1). [See Extras.]
- Moving beyond (\mathbb{C}_1) takes us into *comparative probability*. A t.p. \succeq is a comparative probability iff \succeq satisfies (A₁), (A₂), &
 - (A₅) If $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, then:

$$q \succeq r \iff p \lor q \succeq p \lor r$$

 (\mathbb{C}_2) S's \succeq -relation (assumed to be a total preorder on \mathcal{B}_n) should be a *comparative probability* relation.

Epistemic Foundations for ≥

- A mass function on a Boolean algebra \mathcal{B}_n is a function $m: \mathcal{B}_n \to [0,1]$ that satisfies the following two conditions:
 - $(M_1) \ m(\bot) = 0.$
 - $(M_2) \sum_{p \in \mathcal{B}_n} m(p) = 1.$
- A belief function Bel: $\mathcal{B}_n \mapsto [0,1]$ is generated by an underlying mass function m on \mathcal{B}_n in the following way:

$$\mathrm{Bel}_m(p) \stackrel{\mathrm{def}}{=} \sum_{\substack{q \in \mathcal{B}_n \ q \text{ entails } p}} m(q).$$

- Now, consider the following coherence requirement:
 - (\mathbb{C}_0) *S*'s \succeq -relation (assumed to be a total preorder on \mathcal{B}_n) should be *partially* representable by some belief function.
- A total preorder \succeq satisfies (\mathbb{C}_0) iff \succeq satisfies (\mathbb{A}_2) [26]. So, Theorem 1 has a Corollary: ["Thm 2"] (WADA) entails (\mathfrak{C}_0). What about *full* representability of a belief function? To wit:

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

Epistemic Foundations for ≥

Theorem 4. (WADA) does *not* entail (\mathfrak{C}_2). [See Extras.]

- The following axiomatic constraint is a weakening of (A_5) .
 - (A_5^*) If $\langle p,q \rangle$ and $\langle p,r \rangle$ are mutually exclusive, then:

$$q > r \Longrightarrow p \lor r \gt p \lor q$$

- And, the following coherence requirement is a (corresponding) weakening of coherence requirement (\mathbb{C}_2).
 - $(\mathbb{C}_2^{\star}) \geq \text{should}$ (be a total preorder and) satisfy (A_1) , (A_2) and (A_5^{\star}) .

Theorem 5. (WADA) does *not* entail (\mathbb{C}_2^{\star}). [See Extras.]

- Our final pair of coherence requirements for \geq involve representability by some *probability* function.
- I'm sure everyone knows what a Pr-function is, but...
- Probability functions are special kinds of belief functions (just as belief functions were special kinds of Pl-measures).

15

- A *probability* mass function is a function m which maps states of \mathcal{B}_n to [0, 1], and which satisfies these two axioms.
 - $(20)_1$) $m(\perp) = 0$.
 - $(\mathfrak{W}_2) \sum_{\mathfrak{s} \in \mathcal{B}_n} \mathfrak{m}(\mathfrak{s}) = 1.$
- A probability function $Pr : \mathcal{B}_n \rightarrow [0,1]$ is generated by an underlying probability mass function m in the following way

$$\Pr_{\mathfrak{m}}(p) \stackrel{\text{def}}{=} \sum_{\substack{\mathfrak{s} \in \mathcal{B}_n \\ \mathfrak{s} \text{ entails } p}} \mathfrak{m}(\mathfrak{s}).$$

- That brings us to our final pair of requirements for \succeq .
 - $(\mathbb{C}_3) \geq \text{should be be partially representable by some Pr-function.}$
 - $(\mathbb{C}_4) \geq \text{should be be } \text{fully representable by some Pr-function.}$
- de Finetti [3, 4] famously conjectured that (\mathbb{C}_2) entails (\mathbb{C}_4) . But, Kraft *et. al.* [22] showed that $(\mathbb{C}_2) \not\Rightarrow (\mathbb{C}_3)$. [See Extras.]

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

• We have the following logical relations between the C's.

- If a requirement follows from (WADA), it gets a "\sqrt". If a requirement does *not* to follow from (WADA), it gets an "X".
- We conclude with our final (and most important) Fundamental Theorem(s). [See Extras for proofs.]

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

Epistemic Foundations for \succeq

- We assume that "numerical probabilities reflect evidence", i.e., we adopt the following evidential requirement.
 - $(\mathcal{R}) \succeq \text{is representable by some } regular \text{ probability function.}$
 - **Fundamental Theorem.** If a comparative confidence relation \succeq satisfies (\mathcal{R}), then \succeq satisfies (WADA).
- The proof of our Fundamental Theorem (see Extras) reveals that $I(\succeq, w)$ is evidentially proper, in this sense [13].

Definition (Evidential Propriety). Suppose a judgment set J of type J is supported by the evidence. That is, suppose there exists some evidential probability function $Pr(\cdot)$ which represents J (in the appropriate sense of "represents" for judgment sets of type J). If this is sufficient to ensure that J minimizes expected inaccuracy (relative to Pr), according to the measure of inaccuracy $\mathfrak{I}(\mathbf{J}, w)$, then we will say that the measure I is **evidentially proper**.

Note: the decision to weight ≻-mistakes *twice as heavily* as ~-mistakes is *forced* by evidential propriety (see Extras).

Epistemic Foundations for ≥

Extras

Theorem 1. (WADA) entails (\mathfrak{C}), viz.. (WADA) \Rightarrow (A₁) & (A₂).

Proof.

Suppose \succeq violates (A₁). Because \succeq is total, this means \succeq is such that $\bot \succeq \top$. Consider the relation \succeq' which agrees with \succeq on all comparisons outside the $\langle \bot, \top \rangle$ -fragment, but which is such that $\top \succ' \bot$. We have: $(\forall w) [i(\top \succ' \bot, w) = 0 < 1 \le i(\bot \succeq \top, w)]$. \Box

Suppose \succeq violates (A₂). Because \succeq is total, this means there is a pair of propositions p and q in A such that (a) p entails q but (b) p > q. Consider the relation \geq' which agrees with \geq outside of the $\langle p, q \rangle$ -fragment, but which is such that $q \succ' p$. The table on the next slide depicts the $\langle p, q \rangle$ -fragments of the relations \succeq and \succeq' in the three salient possible worlds w_1 - w_3 not ruled out by (a) $p \models q$. By (b) & (LO), p and q are not logically equivalent. So, world w_2 is a live possibility, and \succeq' weakly 1-dominates \succeq .

General Background Represen			nting \succeq , \succ and \sim Epistemic Foundations for \succeq 000000000			Extras •••••••	Refs	
	w_i	p	q	≥	≥′	$I(\succeq, w_i)$	$\mathcal{I}(\succeq', w_i)$	_
	w_1	Т	Т	$p \succ q$	$q \succ' p$	0	0	_
		Т	F					
	w_2	F	Т	$p \succ q$	$q \succ' p$	2	0	_
	w_3	F	F	$p \succ q$	$q \succ' p$	0	0	
	ı & McCarth					for Comparative Conf		21

Extras

Theorem 4. (WADA) does *not* entail (\mathbb{C}_2).

Proof.

Having already proved Theorem 1, we just need to show that (WADA) does *not* entail (A₅). Suppose (a) $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, (b) a > r, and (c) $p \lor r > p \lor q$. It can be shown (by exhaustive search) that there is no binary relation \succeq' on the agenda $\langle p, q, r \rangle$ such that (i) \succeq' agrees with \succeq on all judgments *except* (b) and (c), and (ii) \succeq' weakly *I*-dominates \succeq . There are only four alternative judgment sets that need to be compared with $\{(b), (c)\}$, in terms of their 1-values across the five possible worlds (w_1-w_5) compatible with the precondition of (A₅): (1) $\{q \sim r, p \vee r > p \vee q\}$, (2) $\{r > q, p \vee r > p \vee q\}$, (3) $\{a > r, p \lor r \sim p \lor a\}$, and (4) $\{a \sim r, p \lor r \sim p \lor a\}$. It is easy to verify that none of these alternative judgment sets weakly *1*-dominates the set $\{(b), (c)\}$, across the five salient possible worlds. Note: this argument actually establishes the *stronger* claim (**Theorem 5**) that (WADA) does *not* entail $(A_5^*)/(C_2^*)$.

Theorem 3. (WADA) entails (\mathbb{C}_1).

Proof.

Having already proved Theorem 1, we just need to show that (WADA) entails (A₃). Suppose \succeq violates (A₃). Because \succeq is total, this means there must exist $p, q, r \in \mathcal{A}$ such that (a) $p \models q$, (b) $\langle q, r \rangle$ are mutually exclusive, (c) q > p, but (d) $p \vee r \geq q \vee r$. Let \succeq' agree with \succeq on every judgment, *except* (d). That is, let \succeq' be such that (e) $q \succ' p$ and (f) $q \lor r \succ' p \lor r$. There are only four worlds (or $\langle p, q, r \rangle$ state descriptions) compatible with the precondition of (A_3) . These are the following (state descriptions).

$$w_1 = p \& q \& \neg r$$
 $w_2 = \neg p \& q \& \neg r$
 $w_3 = \neg p \& \neg q \& r$ $w_4 = \neg p \& \neg q \& \neg r$

By (c) & (LO), p and q are not logically equivalent. As a result, world w_2 is a live possibility. Moreover, (f) will *not* be inaccurate in any of these four worlds. But, (d) must be inaccurate in world w_2 . This suffices to show that \succeq' weakly 1-dominates \succeq .

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

Epistemic Foundations for ≥

Extras

Fundamental Theorem. If a comparative confidence relation \succeq satisfies (\mathcal{R}) , then \succeq satisfies (WADA). That is, $(\mathcal{R}) \Rightarrow$ (WADA).

Proof.

Fitelson & McCarthy

Suppose $Pr(\cdot)$ fully represents \succeq . Consider the expected 1-inaccuracy, as calculated by $\Pr(\cdot)$, of \succeq : $\mathbb{E}\mathcal{I}_{\Pr}^{\succeq} \stackrel{\text{def}}{=} \sum_{w} \Pr(w) \cdot \mathcal{I}(\succeq, w)$. Since $\mathcal{I}(\succeq, w)$ is a sum of the $i(p \ge q, w)$ for each $\langle p, q \rangle \in \mathcal{A}$, and since \mathbb{E} is linear:

$$\mathbb{E} \mathcal{I}_{\Pr}^{\succeq} = \sum_{p,q \in \mathcal{A}} \mathbb{E}_{\Pr} \mathfrak{i}(p \succeq q, w)$$

(1) Suppose Pr(p) > Pr(q). Then we have:

 $\mathbb{E}_{\Pr}i(p \succ q, w) = 2 \cdot \Pr(q \& \neg p) < \mathbb{E}_{\Pr}i(p \sim q, w) = \Pr(p \neq q), \text{ and }$ $\mathbb{E}_{\Pr}i(p \succ q, w) = 2 \cdot \Pr(q \& \neg p) < \mathbb{E}_{\Pr}i(q \succ p, w) = 2 \cdot \Pr(p \& \neg q).$

(2) Suppose Pr(p) = Pr(q). Then we have:

 $\mathbb{E}_{\Pr}\hat{\iota}(p \sim q, w) = \Pr(p \neq q) = \mathbb{E}_{\Pr}\hat{\iota}(p \succ q, w) = 2 \cdot \Pr(q \& \neg p).$

As a result, if \succeq is fully representable by any $Pr(\cdot)$, then \succeq cannot be *strictly 1*-dominated, *i.e.*, $(\mathbb{C}_4) \Rightarrow (SADA)$. Moreover, if we assume $Pr(\cdot)$ to be *regular*, then \succeq must satisfy (WADA) [13]. \therefore (\mathcal{R}) \Rightarrow (WADA).

Theorem. a := 2; b := 0 is the only assignment to a, b that ensures the following definition of *i* is *evidentially proper*.

$$\hat{\iota}(p \geq q, w) \stackrel{\text{def}}{=} \begin{cases}
a & \text{if } q \& \neg p \text{ is true in } w, \text{ and } p > q, \\
b & \text{if } q \equiv p \text{ is true in } w, \text{ and } p > q, \\
1 & \text{if } p \not\equiv q \text{ is true in } w, \text{ and } p \sim q, \\
0 & \text{otherwise.}
\end{cases}$$

Let $\mathfrak{m}_4 = \Pr(p \& q)$, $\mathfrak{m}_3 = \Pr(\neg p \& q)$, and $\mathfrak{m}_2 = \Pr(p \& \neg q)$. Then, the propriety of i is equivalent to the following (universal) claim. And, the only assignment that makes this (universal) claim true is a := 2: b := 0.

$$\mathbf{m}_2 + \mathbf{m}_4 > \mathbf{m}_3 + \mathbf{m}_4 \Rightarrow \left(\begin{array}{c} a \cdot \mathbf{m}_3 + b \cdot (1 - (\mathbf{m}_2 + \mathbf{m}_3)) \leq a \cdot \mathbf{m}_2 + b \cdot (1 - (\mathbf{m}_2 + \mathbf{m}_3)) \\ & \& \\ a \cdot \mathbf{m}_3 + b \cdot (1 - (\mathbf{m}_2 + \mathbf{m}_3)) \leq \mathbf{m}_2 + \mathbf{m}_3 \end{array} \right)$$

$$\mathbf{m}_2 + \mathbf{m}_4 = \mathbf{m}_3 + \mathbf{m}_4 \Rightarrow \begin{pmatrix} \mathbf{m}_2 + \mathbf{m}_3 \le a \cdot \mathbf{m}_2 + b \cdot (1 - (\mathbf{m}_2 + \mathbf{m}_3)) \\ & & & \\ \mathbf{m}_2 + \mathbf{m}_3 \le a \cdot \mathbf{m}_3 + b \cdot (1 - (\mathbf{m}_2 + \mathbf{m}_3)) \end{pmatrix}$$

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

Extras

- In their seminal paper, Kraft et. al. [22] refute de Finetti's [3, 4] conjecture: $(\mathbb{C}_2) \Rightarrow (\mathbb{C}_4)$. In fact, they show $(\mathbb{C}_2) \Rightarrow (\mathbb{C}_3)$.
- Their counterexample involves a linear order \geq on an algebra \mathcal{B}_{32} generated by five states: $\{\mathfrak{s}_1,\ldots,\mathfrak{s}_5\}$.
- We won't write down the entire linear order ≥ as this involves a complete ranking of 32 propositions. Instead, we focus only the following, salient 8-proposition fragment.

≥	\mathfrak{s}_1	$\mathfrak{s}_2 \vee \mathfrak{s}_4$	$\mathfrak{s}_3 \vee \mathfrak{s}_4$	$\mathfrak{s}_1 \vee \mathfrak{s}_2$	$\mathfrak{s}_2 \vee \mathfrak{s}_5$	$\mathfrak{s}_1 \vee \mathfrak{s}_4$	$\mathfrak{s}_1\vee\mathfrak{s}_2\vee\mathfrak{s}_4$	$\mathfrak{s}_3 \vee \mathfrak{s}_5$
\mathfrak{s}_1	1	1	0	0	0	0	0	0
$\mathfrak{s}_2 \vee \mathfrak{s}_4$	0	1	0	0	0	0	0	0
$\mathfrak{s}_3 \vee \mathfrak{s}_4$	1	1	1	1	0	0	0	0
$\mathfrak{s}_1 \vee \mathfrak{s}_2$	1	1	0	1	0	0	0	0
$\mathfrak{s}_2 \vee \mathfrak{s}_5$	1	1	1	1	1	1	0	0
$\mathfrak{s}_1\vee\mathfrak{s}_4$	1	1	1	1	0	1	0	0
$\mathfrak{s}_1\vee\mathfrak{s}_2\vee\mathfrak{s}_4$	1	1	1	1	1	1	1	1
$\mathfrak{s}_3 \vee \mathfrak{s}_5$	1	1	1	1	1	1	0	1

• Our ordering presuppositions (Totality & Transitivity) are not universally accepted as rational requirements [14, 12, 23].

• In our book [13], we analyze both of the ordering presuppositions in more detail. Specifically, we show that:

- (1) Totality does not follow from weak accuracy dominance avoidance. That is, (WADA) does not entail Totality.
- (2) Transitivity does not from weak accuracy dominance avoidance. That is, (WADA) does not entail Transitivity.
- These two negative results [especially (1)] are probably not very surprising. But, it is somewhat interesting that *none of* the three instances of Transitivity is entailed by (WADA).

Transitivity₁. If p > q and q > r, then r > p.

Transitivity₂. If p > q and $q \sim r$, then r > p.

Transitivity₃. If $p \sim q$ and $q \sim r$, then $p \sim r$.

• The first instance of Transitivity is the *least* controversial of the three. And, the last (transitivity of \sim) is the *most* [23].

Fitelson & McCarthy

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

- Simplest case of dF's Theorem [5]: b(P) = x; $b(\neg P) = y$. The diagonal lines are the *probabilistic b*'s (on $\langle P, \neg P \rangle$).
- The two directions of de Finetti's theorem (for $\langle P, \neg P \rangle$) can be established via these two figures. And, this simplest $(\langle P, \neg P \rangle)$ version of the Theorem *generalizes* from the simplest propositional Boolean algebra \mathcal{B}_4 to \mathcal{B}_n , for any n.

(WADA)

(SADA)

(SSADA)

 (\mathcal{R})

 (\mathbb{C}_1)

(C`

 (\mathbb{C}_0)

• There are two, weaker 1-dominance requirements that we discuss in the book [13]. These are as follows.

> **Strict Accuracy-Dominance Avoidance** (SADA). ≥ should not be strictly dominated in inaccuracy (according to 1). More formally, there should *not* exist a \succeq' (on \mathcal{A}) such that

$$(\forall w) [\mathcal{I}(\succeq', w) < \mathcal{I}(\succeq, w)].$$

- Of course, (SADA) is *strictly weaker* than (WADA). And, here is a requirement that is even weaker than (SADA).
- Let $\mathbf{M}(\succeq, w) \stackrel{\text{def}}{=}$ the *set* of \succeq 's inaccurate judgments at w.

Strong Strict Accuracy-Dominance Avoidance (SSADA). There should *not* exist a \succeq' on \mathcal{A} such that:

$$(\forall w) [\mathbf{M}(\succeq', w) \subset \mathbf{M}(\succeq, w)].$$

• Some of our (WADA) results also go through for (SADA) and/or (SSADA). Finally, we give a complete, "big picture" of all the logical relations among all the requirements.

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

31

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

Refs

- [1] R. Briggs, F. Cariani, K. Easwaran and B. Fitelson Individual Coherence and Group Coherence, to appear in Essays in Collective Epistemology, J. Lackey (ed.), OUP.
- [2] A. Capotorti and B. Vantaggi, Axiomatic characterization of partial ordinal relations, International Journal of Approximate Reasoning, 2000.
- [3] B. de Finetti, Foresight: Its Logical Laws, Its Subjective Sources (1935), in H. Kyburg and H. Smokler (eds.), Studies in Subjective Probability, Wiley, 1964.
- , La "logica del plausibile" secondo la concezione di Polya, Societa Italiana per il Progresso delle Scienze, 1951.
- [5] _____ Theory of probability, Wiley, 1970.
- [6] M. Deza and E. Deza, Encyclopedia of Distances, Springer, 2009.
- [7] C. Duddy and A. Piggins, A measure of distance between judgment sets, Social Choice and Welfare, 2012.
- [8] K. Easwaran, Dr. Truthlove or: How I Learned to Stop Worrying and Love Bayesian Probability, 2013, manuscript.
- [9] K. Easwaran and B. Fitelson, An "Evidentialist" Worry about Joyce's Argument for Probabilism, Dialectica, 2012.
- , Accuracy, Coherence & Evidence, to appear in Oxford Studies in Epistemology (Volume 5), T. Szabo Gendler & J. Hawthorne (eds.), Oxford University Press, 2013.
- [11] P. Fishburn, Weak qualitative probability on finite sets. Annals of Mathematical Statistics, 1969.

[12] _____, The Axioms of Subjective Probability, Statistical Science, 1986.

 (A_1)

- [13] B. Fitelson, Coherence, book manuscript, 2014.
- [14] P. Forrest, The problem of representing incompletely ordered doxastic systems, Synthese, 1989.
- [15] J. Halpern, Reasoning about uncertainty, MIT Press, 2003.
- [16] J. Hawthorne, The lockean thesis and the logic of belief, in F. Huber and C. Schmidt-Petri (eds.), Degrees of Belief, Springer, 2009.
- [17] T. Icard, Pragmatic Considerations on Comparative Confidence, 2014, manuscript.
- [18] J. Joyce, A Nonpragmatic Vindication of Probabilism, Philosophy of Science, 1998.
- _, Accuracy and Coherence: Prospects for an Alethic Epistemology of Partial Belief, in F. Huber and C. Schmidt-Petri (eds.), Degrees of Belief, Springer, 2009.
- [20] J. Kemeny and J. Snell, Mathematical models in the social sciences, Ginn, 1962.
- [21] I.M. Kevnes, A Treatise on Probability. MacMillan, 1921.
- [22] C. Kraft, J. Pratt and A. Seidenberg, Intuitive Probability on Finite Sets, The Annals of Mathematical Statistics, 1959.
- [23] K. Lehrer and C. Wagner, Intransitive Indifference: The Semi-Order Problem, Synthese, 1985.
- [24] L. Savage, The Foundations of Statistics, Dover, 1972.
- [25] D. Scott, Measurement Structures and Linear Inequalities, Journal of Mathematical Psych., 1964.
- [26] S. Wong, Y. Yao, P. Bollmann and H. Burger, Axiomatization of qualitative belief structure, IEEE Transactions on Systems, Man and Cybernetics, 1991.
- [27] P. Young, Optimal voting rules, The Journal of Economic Perspectives, 1995.