$ \begin{array}{c} \mbox{General Background} \\ \mbox{ooo} \end{array} & \begin{array}{c} \mbox{Representing} \succeq, \succ \mbox{and} \sim \\ ooooooooooooooooooooooooooooooooooo$	General BackgroundRepresenting \succeq , \succ and \sim Epistemic Foundations for \succeq ExtrasRefs $\bullet \circ \circ$ $\circ \circ $
Toward an Epistemic Foundation for Comparative Confidence Branden Fitelson ¹ David McCarthy ² ¹ Philosophy & RuCCS @ Rutgers & MCMP @ LMU branden@fitelson.org ² Philosophy @ HKU mccarthy@hku.hk	 The contemporary literature focuses mainly on two types of <i>non-comparative</i> judgment: belief and credence. Not much attention is paid to <i>comparative</i> judgment (but see [16]). It wasn't always thus. Keynes [21], de Finetti [3, 4] and Savage [24] all emphasized the importance (and perhaps even <i>fundamentality</i>) of comparative confidence. <i>Comparative confidence</i> is a three-place relation between an agent <i>S</i> (at a time <i>t</i>) and a pair of propositions ⟨<i>p</i>, <i>q</i>⟩. We'll use ^r <i>p</i> ≥ <i>q</i>[¬] to express this relation, <i>viz.</i>, ^r <i>S</i> is at least as confident in the truth of <i>p</i> as she is in the truth of <i>q</i>[¬]. It is difficult to articulate the meaning of ≥ without somehow implicating that it essentially involves some <i>non-comparative</i> judgments [<i>e.g.</i>, <i>b</i>(<i>p</i>) ≥ <i>b</i>(<i>q</i>)]. But, it's important to think of ≥ as <i>autonomous</i> and <i>irreducibly comparative</i> – <i>i.e.</i>, as a kind of comparative judgment for the properties of the properties of
Fitelson & McCarthy Toward an Epistemic Foundation for Comparative Confidence 1	judgment <i>that may not reduce to anything non-comparative.</i> Fitelson & McCarthy Toward an Epistemic Foundation for Comparative Confidence 2
General Background Representing ≥, > and ~ Epistemic Foundations for ≥ Extras Refs ○●○ ○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	General Background Representing ≥, > and ~ Epistemic Foundations for ≥ Extras Refs ○● ○○○ ○○○○ ○○○○ ○○○○ ○○○○ ○○○○
 Aim: give <i>epistemic justifications</i> of coherence requirements for ≿ that have appeared in the contemporary literature. Means: exploit a generalization of Joyce's non-pragmatic argument for probabilism [18, 19]. Note: something similar has already been done for full belief [10, 1, 8, 13]. Joyce was inspired by an elegant geometrical argument of de Finetti [5] (see Extras). However, unlike de Finetti, Savage, <i>et. al.</i> [24, 15, 17] Joyce's approach is <i>epistemic</i> in nature. 	 Step 2: Define an <i>inaccuracy score</i> i(j, w) for individual judgments j of type J. This is a numerical measure of how <i>inaccurate</i> (in the sense of Step 1) j is (at w). For each <i>set</i> J = {j₁,, j_n}, we define its <i>total inaccuracy</i> at w as the <i>sum</i> of the i-scores of its members: I(J, w) ≝ ∑_i i(j_i, w). Step 3: Adopt a <i>fundamental epistemic principle</i>, which uses I(J, w) to ground a (formal, synchronic, epistemic) coherence requirement for judgment sets J of type J. In the case of Joyce's argument for probabilism. we have:
• Abstracting away from Joyce's argument, we have developed a <i>framework</i> [13] for grounding epistemic coherence requirements for judgment sets $\mathbf{J} = \{j_1,, j_n\}$ (of type J) over <i>agendas</i> of propositions $\mathcal{A} = \{p_1,, p_n\}$.	Step 1 : ${}^{r}b(p) = r^{\gamma}$ is <i>inaccurate</i> at <i>w</i> just in case <i>r</i> differs from the value assigned to <i>p</i> by the <i>indicator function</i> $v_w(p)$, which is 1 (0) if <i>p</i> is true (false) at <i>w</i> . Step 2 : $i(b(p), w)$ is (squared) <i>Euclidean distance</i> (or Brier
 Applying our framework involves three steps. Step 1: Identify a precise sense in which individual judgments <i>j</i> of type J can be (qualitatively) <i>inaccurate</i> (or <i>alethically defective/imperfect</i>) at a possible world <i>w</i>. 	score) between $b(p)$ and $v_w(p)$. $\mathcal{I}(b, w) = \sum_i i(b(p_i), w)$. Step 3 : The <i>fundamental epistemic principle</i> : <i>b</i> shouldn't be <i>weakly dominated</i> (by any <i>b'</i>), according to $\mathcal{I}(\cdot, w)$.
Fitelson & McCarthy Toward an Enistemic Foundation for Comparative Confidence 3	I oday: we apply the tramework to <i>comparative confidence</i> . Eitelson & McCarthy Toward an Epistemic Foundation for Comparative Confidence

General BackgroundRepresenting ≥, ≻ and ~Epistemic Foundations for ≥Extras0000000000000000000000000000

• Step 2 requires a *point-wise* inaccuracy measure $i(p \geq q, w)$.

There are two kinds of inaccurate \geq -judgments (Facts 1 and

not receive equal i-scores. Mistaken \succ judgments should

receive *greater* i-scores than mistaken ~ judgments.

mistakes? *Twice as inaccurate!* Suppose (by convention) that we assign an i-score of 1 to mistaken ~ judgments. We

must (!) assign an *i*-score of 2 to mistaken \succ judgments.

 $\mathfrak{i}(p \geq q, w) \cong \begin{cases} 1 & \text{if } p \neq q \text{ is true at } w, \text{ and } p \sim q, \end{cases}$

• \geq 's total inaccuracy (on \mathcal{A} at w) is the sum of \geq 's *i*-scores.

 $\mathcal{I}(\succeq, w) \stackrel{\text{\tiny def}}{=} \sum \mathfrak{i}(p \succeq q, w).$

Toward an Epistemic Foundation for Comparative Confidence

Epistemic Foundations for \geq

 $p.a \in A$

• Various coherence requirements for \geq have been discussed

• We begin with the fundamental requirement (C), which has

(near) universal acceptance. We will state (C) in two ways:

axiomatically, and in terms of numerical representability.

should satisfy the following two axiomatic constraints:

(C) *S*'s \succeq -relation (assumed to be a total preorder on \mathcal{B}_n)

(A₂) For all $p, q \in \mathcal{B}_n$, if p entails q then $q \succeq p$.

• A *plausibility measure (a.k.a., a capacity)* on a Boolean

satisfies the following three conditions [15, *p*. 51]:

(Pl₃) For all $p, q \in \mathcal{B}_n$, if p entails q then $Pl(q) \ge Pl(p)$.

algebra \mathcal{B}_n is real-valued function Pl : $\mathcal{B}_n \mapsto [0, 1]$ which

 $(A_1) \quad \top \succ \perp$.

(Pl₁) $Pl(\perp) = 0$.

(Pl₂) $Pl(\top) = 1$.

[15, 2, 26]. We'll focus on a *particular family* of these.

0 otherwise.

• *How much more inaccurate* than \sim mistakes are \succ

2). Intuitively, these two should kinds of inaccuracies should

2 if $q \& \neg p$ is true at w, and $p \succ q$,

- Step 1 involves articulating a precise sense in which an individual comparative confidence judgment $p \ge q$ is *inaccurate* at w. Here, we follow Joyce's [18, 19] *extensionality* assumption, which requires "inaccuracy" to *supervene on the truth-values of the propositions in* A *at* w.
- An individual comparative confidence judgment $p \geq q$ is inaccurate at w iff $p \geq q$ entails that the ordering \geq fails to rank all truths strictly above all falsehoods at w.¹
 - On this conception, there are *two facts* about the inaccuracy of individual comparative confidence judgments $p \geq q$.
 - **Fact 1.** If $q \& \neg p$ is true at w, then $p \succ q$ is inaccurate at w.
 - **Fact 2.** If $p \neq q$ is true at *w*, then $p \sim q$ is inaccurate at *w*.

¹One might be tempted by a weaker (and "more Joycean") definition of inaccuracy, according to which $p \succeq q$ is inaccurate iff it *contradicts* the comparison $p \succeq_w q$ *induced by the indicator function* v_w . This weaker definition (which *also* deems $p \succ q$ inaccurate *if* $p \equiv q$ *is true at* w) is *untenable* for us. This will follow from our Fundamental Theorem, below.

Fitelson & McCarthy

Toward an Epistemic Foundation for Comparative Confidence

General BackgroundRepresenting \geq, \succ and \sim Epistemic Foundations for \succeq ExtrasRefs00

• **Step 3** involves the adoption of a *fundamental epistemic principle*. Here, we will follow Joyce and adopt:

Weak Accuracy-Dominance Avoidance (WADA). \succeq should *not be weakly dominated* in inaccuracy (according to *I*). More formally, there should *not* exist a \succeq' (on \mathcal{A}) such that

- (i) $(\forall w) [\mathcal{I}(\succeq', w) \leq \mathcal{I}(\succeq, w)]$, and
- (ii) $(\exists w) [\mathcal{I}(\succeq', w) < \mathcal{I}(\succeq, w)].$
- Recall our toy relations ≥ and ≥' over B₄. Neither of these relations should be *ruled-out as incoherent*, as each *could be* supported by *some* body of evidence [19, *pp.* 282–3].
- **Theorem**. Neither \succeq nor \succeq' is weakly dominated in *1*-inaccuracy by **any** binary relation on \mathcal{B}_4 .
 - This result is a corollary of our Fundamental Theorem, which will also explain why we were *forced* to assign an inaccuracy score of *exactly 2* to inaccurate ≻ judgments.
 - More on that later. Meanwhile, a historical interlude.

Fitelson & McCarthy

11

Fitelson & McCarthy

Q

10

 Two kinds of representability of ≥, by a real-valued <i>f</i>. ≥ is <i>fully</i> represented by <i>f</i> ≝ for all <i>p</i>, <i>q</i> ∈ B_n <i>p</i> ≥ <i>q</i> ⇔ <i>f</i>(<i>p</i>) ≥ <i>f</i>(<i>q</i>). ≥ is <i>partially</i> represented by <i>f</i> ≝ for all <i>p</i>, <i>q</i> ∈ B_n <i>p</i> > <i>q</i> ⇒ <i>f</i>(<i>p</i>) > <i>f</i>(<i>q</i>). Now, (ℂ) can be expressed equivalently, as follows: (ℂ) <i>S</i>'s ≥-relation (assumed to be a total preorder on B_n) should be <i>fully representable by some plausibility measure</i>. 	 A mass function on a Boolean algebra B_n is a function m : B_n → [0, 1] that satisfies the following two conditions: (M₁) m(⊥) = 0. (M₂) ∑_{p∈B_n} m(p) = 1. A belief function Bel : B_n → [0, 1] is generated by an underlying mass function m on B_n in the following way: Bel_m(p) ∉ ∑_{q∈B_n} m(q).
Theorem 1. (WADA) entails (C). [See Extras for a proof.]	• Now, consider the following coherence requirement:
 There are several other coherence requirements for ≥ that can be expressed both axiomatically, and in terms of numerical representability by some real-valued <i>f</i>. We'll state these, and say whether or not they follow from (WADA). The next requirements involve <i>heliaf functions</i>. 	 (C₀) S's ≥-relation (assumed to be a total preorder on B_n) should be <i>partially</i> representable by some belief function. A total preorder ≥ satisfies (C₀) iff ≥ satisfies (A₂) [26]. So, Theorem 1 has a Corollary: ["Thm 2"] (WADA) entails (C₀). What about <i>full</i> representability of a belief function? To wit:
Fitelson & McCarthy Toward an Epistemic Foundation for Comparative Confidence 13	Fitelson & McCarthy Toward an Epistemic Foundation for Comparative Confidence 14
General Background Representing $\geq_{,} >$ and \sim Epistemic Foundations for \geq Extras Refs	General Background Representing $\geq_{,} \succ$ and \sim Epistemic Foundations for \succeq Extras Refs
 (C₁) S's ≥-relation (assumed to be a total preorder on B_n) should be <i>fully</i> representable by a belief function. As it turns out [26], a relation ≥ is <i>fully</i> representable by 	Theorem 4. (WADA) does <i>not</i> entail (\mathbb{C}_2). [See Extras.] • The following axiomatic constraint is a weakening of (A ₅). (A ₅ [*]) If $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, then:
 (C₁) S's ≥-relation (assumed to be a total preorder on B_n) should be <i>fully</i> representable by a belief function. As it turns out [26], a relation ≥ is <i>fully</i> representable by some belief function if and only if ≥ satisfies (A₁), (A₂), <i>and</i> 	Theorem 4. (WADA) does <i>not</i> entail (\mathbb{C}_2). [See Extras.] • The following axiomatic constraint is a weakening of (A ₅). (A ₅ [*]) If $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, then: $q \succ r \Longrightarrow p \lor r \succeq p \lor q$
 (ℂ₁) S's ≥-relation (assumed to be a total preorder on B_n) should be <i>fully</i> representable by a belief function. As it turns out [26], a relation ≥ is <i>fully</i> representable by some belief function if and only if ≥ satisfies (A₁), (A₂), <i>and</i> (A₃) If <i>p</i> entails <i>q</i> and ⟨<i>q</i>,<i>r</i>⟩ are mutually exclusive, then: <i>q</i> ≻ <i>p</i> ⇒ <i>q</i> ∨ <i>r</i> ≻ <i>p</i> ∨ <i>r</i>. (WADA) also entails (A₃). That is, we have the following: 	Theorem 4. (WADA) does <i>not</i> entail (\mathbb{C}_2). [See Extras.] • The following axiomatic constraint is a weakening of (A ₅). (A ₅ [*]) If $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, then: $q \succ r \Longrightarrow p \lor r \succcurlyeq p \lor q$ • And, the following coherence requirement is a (corresponding) weakening of coherence requirement (\mathbb{C}_2). (\mathbb{C}_2^*) \succeq should (be a total preorder and) satisfy (A ₁) (A ₂) and (A [*])
 (ℂ₁) S's ≥-relation (assumed to be a total preorder on ℬ_n) should be <i>fully</i> representable by a belief function. As it turns out [26], a relation ≥ is <i>fully</i> representable by some belief function if and only if ≥ satisfies (A₁), (A₂), and (A₃) If <i>p</i> entails <i>q</i> and ⟨<i>q</i>, <i>r</i>⟩ are mutually exclusive, then: <i>q</i> > <i>p</i> ⇒ <i>q</i> ∨ <i>r</i> > <i>p</i> ∨ <i>r</i>. (WADA) also entails (A₃). That is, we have the following: Theorem 3. (WADA) entails (ℂ₁). [See Extras.] 	Theorem 4. (WADA) does <i>not</i> entail (\mathbb{C}_2). [See Extras.] • The following axiomatic constraint is a weakening of (A ₅). (A ₅ [*]) If $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, then: $q \succ r \Longrightarrow p \lor r \succcurlyeq p \lor q$ • And, the following coherence requirement is a (corresponding) weakening of coherence requirement (\mathbb{C}_2). (\mathbb{C}_2^*) \succeq should (be a total preorder and) satisfy (A ₁), (A ₂) and (A ₅ [*]).
 (ℂ₁) S's ≥-relation (assumed to be a total preorder on B_n) should be <i>fully</i> representable by a belief function. As it turns out [26], a relation ≥ is <i>fully</i> representable by some belief function if and only if ≥ satisfies (A₁), (A₂), and (A₃) If p entails q and ⟨q, r⟩ are mutually exclusive, then: q > p ⇒ q ∨ r > p ∨ r. (WADA) also entails (A₃). That is, we have the following: Theorem 3. (WADA) entails (ℂ₁). [See Extras.] Moving beyond (ℂ₁) takes us into <i>comparative probability</i>. A t.p. ≥ is a <i>comparative probability</i> iff ≥ satisfies (A₁), (A₂), & (A₅) If ⟨p,q⟩ and ⟨p,r⟩ are mutually exclusive, then: 	Theorem 4. (WADA) does <i>not</i> entail (\mathbb{C}_2). [See Extras.] • The following axiomatic constraint is a weakening of (A ₅). (A ₅ [*]) If $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, then: $q \succ r \Rightarrow p \lor r \succcurlyeq p \lor q$ • And, the following coherence requirement is a (corresponding) weakening of coherence requirement (\mathbb{C}_2). (\mathbb{C}_2^*) \succeq should (be a total preorder and) satisfy (A ₁), (A ₂) and (A ₅ [*]). Theorem 5. (WADA) does <i>not</i> entail (\mathbb{C}_2^*). [See Extras.] • Our final pair of coherence requirements for \succeq involve representability by some <i>probability</i> function.
 (C₁) S's ≥-relation (assumed to be a total preorder on B_n) should be <i>fully</i> representable by a belief function. As it turns out [26], a relation ≥ is <i>fully</i> representable by some belief function if and only if ≥ satisfies (A₁), (A₂), and (A₃) If <i>p</i> entails <i>q</i> and ⟨<i>q</i>,<i>r</i>⟩ are mutually exclusive, then: <i>q</i> > <i>p</i> ⇒ <i>q</i> ∨ <i>r</i> > <i>p</i> ∨ <i>r</i>. (WADA) also entails (A₃). That is, we have the following: Theorem 3. (WADA) entails (C₁). [See Extras.] Moving beyond (C₁) takes us into <i>comparative probability</i>. A t.p. ≥ is a <i>comparative probability</i> iff ≥ satisfies (A₁), (A₂), & (A₅) If ⟨<i>p</i>,<i>q</i>⟩ and ⟨<i>p</i>,<i>r</i>⟩ are mutually exclusive, then: <i>q</i> ≥ <i>r</i> ⇔ <i>p</i> ∨ <i>q</i> ≥ <i>p</i> ∨ <i>r</i> 	Theorem 4. (WADA) does <i>not</i> entail (\mathbb{C}_2). [See Extras.] • The following axiomatic constraint is a weakening of (A ₅). (A ₅ [*]) If $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, then: $q \succ r \Rightarrow p \lor r \succ p \lor q$ • And, the following coherence requirement is a (corresponding) weakening of coherence requirement (\mathbb{C}_2). (\mathbb{C}_2^*) \succeq should (be a total preorder and) satisfy (A ₁), (A ₂) and (A ₅ [*]). Theorem 5. (WADA) does <i>not</i> entail (\mathbb{C}_2^*). [See Extras.] • Our final pair of coherence requirements for \succeq involve representability by some <i>probability</i> function. • I'm sure everyone knows what a Pr-function is, but
 (C₁) S's ≥-relation (assumed to be a total preorder on B_n) should be <i>fully</i> representable by a belief function. As it turns out [26], a relation ≥ is <i>fully</i> representable by some belief function if and only if ≥ satisfies (A₁), (A₂), and (A₃) If <i>p</i> entails <i>q</i> and ⟨<i>q</i>, <i>r</i>⟩ are mutually exclusive, then: <i>q</i> ≻ <i>p</i> ⇒ <i>q</i> ∨ <i>r</i> ≻ <i>p</i> ∨ <i>r</i>. (WADA) also entails (A₃). That is, we have the following: Theorem 3. (WADA) entails (C₁). [See Extras.] Moving beyond (C₁) takes us into <i>comparative probability</i>. A t.p. ≥ is a <i>comparative probability</i> iff ≥ satisfies (A₁), (A₂), & (A₅) If ⟨<i>p</i>, <i>q</i>⟩ and ⟨<i>p</i>, <i>r</i>⟩ are mutually exclusive, then: <i>q</i> ≥ <i>r</i> ⇔ <i>p</i> ∨ <i>q</i> ≥ <i>p</i> ∨ <i>r</i> (C₂) S's ≥-relation (assumed to be a total preorder on B_n) should be a <i>comparative probability</i> relation. 	Theorem 4. (WADA) does <i>not</i> entail (\mathbb{C}_2). [See Extras.] • The following axiomatic constraint is a weakening of (A ₅). (A ₅ [*]) If $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, then: $q \succ r \Rightarrow p \lor r \succ p \lor q$ • And, the following coherence requirement is a (corresponding) weakening of coherence requirement (\mathbb{C}_2). (\mathbb{C}_2^*) \succeq should (be a total preorder and) satisfy (A ₁), (A ₂) and (A ₅ [*]). Theorem 5. (WADA) does <i>not</i> entail (\mathbb{C}_2^*). [See Extras.] • Our final pair of coherence requirements for \succeq involve representability by some <i>probability</i> function. • I'm sure everyone knows what a Pr-function is, but • Probability functions are special kinds of belief functions (just as belief functions were special kinds of Pl-measures).

Epistemic Foundations for \geq

Extras

eneral Background

Representing \succeq , \succ and

Theorem 1. (WADA) entails (\mathfrak{C}). *viz.*, (WADA) \Rightarrow (A₁) & (A₂).

Suppose \succeq violates (A₁). Because \succeq is total, this means \succeq is such that $\perp \geq \top$. Consider the relation \geq' which agrees with \geq on all comparisons outside the (\bot, \top) -fragment, but which is such that $\top \succ' \perp$. We have: $(\forall w) [i(\top \succ' \perp, w) = 0 < 1 \le i(\perp \succeq \top, w)].$

Suppose \geq violates (A₂). Because \geq is total, this means there is a pair of propositions p and q in A such that (a) p entails q but (b) $p \succ q$. Consider the relation \succeq' which agrees with \succeq outside of the $\langle p, q \rangle$ -fragment, but which is such that $q \succ' p$. The table on the next slide depicts the $\langle p, q \rangle$ -fragments of the relations \geq and \geq' in the three salient possible worlds w_1 - w_3 not ruled out by (a) $p \models q$. By (b) & (LO), p and q are not logically equivalent. So, world w_2 is a live possibility, and \succeq' weakly 1-dominates \succeq .

Toward an Epistemic Foundation for Comparative Confidence

20

Genera 000	l Backgroun	d	Represe 0000	nting \succeq , \succ and \sim	Epistemic Fo	undations for ≿ oo	Extras ⊙●○○○○○○○○	Refs
	w _i	p	q	≥	≥′	$\mathcal{I}(\succeq, w_i)$	$\mathcal{I}(\succeq', w_i)$	
	w_1	Т	Т	$p \succ q$	$q \succ' p$	0	0	_
		Т	F					
	w_2	F	Т	$p \succ q$	$q \succ' p$	2	0	
	w_3	F	F	$p \succ q$	$q \succ' p$	0	0	
Fitelso	n & McCartl	hy		Toward an Epi	stemic Foundation	for Comparative Conf	idence	21

General Backg

Foundations for \geq Extras0000000000000

Theorem 4. (WADA) does *not* entail (\mathbb{C}_2).

Proof.

Having already proved Theorem 1, we just need to show that (WADA) does *not* entail (A₅). Suppose (a) $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, (b) $q \succ r$, and (c) $p \lor r \succ p \lor q$. It can be shown (by exhaustive search) that *there is no binary relation* \geq' on the agenda $\langle p, q, r \rangle$ such that (i) \geq' agrees with \geq on all judgments *except* (b) and (c), and (ii) \geq' weakly *I*-dominates \succeq . There are only four alternative judgment sets that need to be compared with $\{(b), (c)\}$, in terms of their *I*-values across the five possible worlds $(w_1 - w_5)$ compatible with the precondition of (A₅): (1) { $q \sim r, p \lor r \succ p \lor q$ }, (2) { $r \succ q, p \lor r \succ p \lor q$ }, (3) $\{q \succ r, p \lor r \sim p \lor q\}$, and (4) $\{q \sim r, p \lor r \sim p \lor q\}$. It is easy to verify that none of these alternative judgment sets weakly *1*-dominates the set $\{(b), (c)\}$, across the five salient possible worlds. Note: this argument actually establishes the *stronger* claim (**Theorem 5**) that (WADA) does *not* entail $(A_5^{\star})/(\mathbb{C}_2^{\star})$.

General Background 000	Representing \succeq , \succ and \sim 0000	Epistemic Foundations for ≥ 0000000000	Extras	Ref

Theorem 3. (WADA) entails (\mathfrak{C}_1).

Proof.

Having already proved Theorem 1, we just need to show that (WADA) entails (A₃). Suppose \succeq violates (A₃). Because \succeq is total, this means there must exist $p, q, r \in A$ such that (a) $p \vDash q$, (b) $\langle q, r \rangle$ are mutually exclusive, (c) $q \succ p$, but (d) $p \lor r \succeq q \lor r$. Let \succeq' agree with \succeq on every judgment, *except* (d). That is, let \succeq' be such that (e) $q \succ' p$ and (f) $q \lor r \succ' p \lor r$. There are only four worlds (or $\langle p, q, r \rangle$ state descriptions) compatible with the precondition of (A₃). These are the following (state descriptions).

$$w_{1} = p \& q \& \neg r \qquad w_{2} = \neg p \& q \& \neg r w_{3} = \neg p \& \neg q \& r \qquad w_{4} = \neg p \& \neg q \& \neg r$$

By (c) & (LO), *p* and *q* are not logically equivalent. As a result, world w_2 is a live possibility. Moreover, (f) will *not* be inaccurate in *any* of these four worlds. But, (d) *must be inaccurate in world* w_2 . This suffices to show that \succeq' weakly 1-dominates \succeq . \Box

Fitelson & McCarthy	Toward an Epistemic Foundation for Comparative Confidence	22

General Background

ic Foundations for ≥ Extras

Fundamental Theorem. If a comparative confidence relation \succeq satisfies (\mathcal{R}), then \succeq satisfies (WADA). That is, (\mathcal{R}) \Rightarrow (WADA).

Proof.

Suppose $Pr(\cdot)$ fully represents \succeq . Consider the expected \mathcal{I} -inaccuracy, as calculated by $Pr(\cdot)$, of $\succeq : \mathbb{E}\mathcal{I}_{Pr}^{\succeq} \cong \sum_{w} Pr(w) \cdot \mathcal{I}(\succeq, w)$. Since $\mathcal{I}(\succeq, w)$ is a sum of the $i(p \geq q, w)$ for each $\langle p, q \rangle \in \mathcal{A}$, and since \mathbb{E} is linear:

$$\mathbb{E}\mathcal{I}_{\Pr}^{\succeq} = \sum_{p,q\in\mathcal{A}} \mathbb{E}_{\Pr}\mathfrak{i}(p \succeq q, w)$$

(1) Suppose Pr(p) > Pr(q). Then we have: $\mathbb{E}_{Pr}i(p \succ q, w) = 2 \cdot Pr(q \& \neg p) < \mathbb{E}_{Pr}i(p \sim q, w) = Pr(p \neq q), and$ $\mathbb{E}_{Pr}i(p \succ q, w) = 2 \cdot Pr(q \& \neg p) < \mathbb{E}_{Pr}i(q \succ p, w) = 2 \cdot Pr(p \& \neg q).$

(2) Suppose Pr(p) = Pr(q). Then we have: $\mathbb{E}_{Pr}i(p \sim q, w) = Pr(p \neq q) = \mathbb{E}_{Pr}i(p \succ q, w) = 2 \cdot Pr(q \& \neg p).$

As a result, if \succeq is fully representable by *any* $Pr(\cdot)$, then \succeq cannot be *strictly* 1-dominated, *i.e.*, (\mathbb{C}_4) \Rightarrow (SADA). Moreover, if we assume $Pr(\cdot)$ to be *regular*, then \succeq must satisfy (WADA) [13]. \therefore (\mathcal{R}) \Rightarrow (WADA). \Box

23

Fitelson & McCarthy

General Background Representing ≥, ≻ and ~ Epistemic Foundations for ≥ Extras Refs 000 0000 00000000000 00000000000 00000000000	General Background Representing ≥, ≻ and ~ Epistemic Foundations for ≥ Extras Refs 000 0000 0000000000 0000000000 0000000000		
Theorem . $a := 2; b := 0$ is <i>the only</i> assignment to a, b that	• Our ordering presuppositions (Totality & Transitivity) are not		
ensures the following definition of i is <i>evidentially proper</i> .	universally accepted as rational requirements [14, 12, 23].		
$\int a \text{if } q \& \neg p \text{ is true in } w \text{, and } p \succ q \text{,}$	 In our book [13], we analyze both of the ordering 		
b if $q \equiv p$ is true in w, and $p \succ q$,	presuppositions in more detail. Specifically, we show that:		
$i(p \ge q, w) \stackrel{\text{\tiny def}}{=} \begin{cases} 1 & \text{if } p \ne q \text{ is true in } w \text{, and } p \sim q, \end{cases}$	(1) Totality does not follow from weak accuracy dominance		
0 otherwise	avoidance. That is, (wADA) does not entail Totality.		
Let $\mathbf{m}_1 = \Pr(n \& a) \ \mathbf{m}_2 = \Pr(\neg n \& a)$ and $\mathbf{m}_2 = \Pr(n \& \neg a)$. Then the	avoidance. That is, (WADA) does not entail Transitivity.		
propriety of i is equivalent to the following (universal) claim. And, the	• These two negative results [especially (1)] are probably not		
only assignment that makes this (universal) claim true is $a := 2$; $b := 0$.	very surprising. But, it is somewhat interesting that <i>none of</i>		
$ m_{2} + m_{4} > m_{2} + m_{4} \Rightarrow \left(a \cdot m_{3} + b \cdot (1 - (m_{2} + m_{3})) \le a \cdot m_{2} + b \cdot (1 - (m_{2} + m_{3})) \right) $	the three instances of Transitivity is entailed by (WADA).		
$ \begin{array}{c} a \cdot \mathfrak{m}_{2} + \mathfrak{m}_{4} \neq \mathfrak{m}_{3} + \mathfrak{m}_{4} \neq \left(\begin{array}{c} a \cdot \mathfrak{m}_{3} + b \cdot (1 - (\mathfrak{m}_{2} + \mathfrak{m}_{3})) \leq \mathfrak{m}_{2} + \mathfrak{m}_{3} \end{array} \right) \end{array} $	Transitivity ₁ . If $p \succ q$ and $q \succ r$, then $r \succ p$.		
&	Transitivity ₂ . If $p \succ q$ and $q \sim r$, then $r \succ p$.		
(m + m < a + m + b (1 + m)))	Transitivity ₃ . If $p \sim q$ and $q \sim r$, then $p \sim r$.		
$m_2 + m_4 = m_3 + m_4 \Rightarrow \begin{pmatrix} m_2 + m_3 \le u \cdot m_2 + v \cdot (1 - (m_2 + m_3)) \\ \& \end{pmatrix}$	• The first instance of Transitivity is the <i>least</i> controversial of		
$\left(\mathfrak{m}_2 + \mathfrak{m}_3 \leq a \cdot \mathfrak{m}_3 + b \cdot (1 - (\mathfrak{m}_2 + \mathfrak{m}_3)) \right)$	the three. And, the last (transitivity of \sim) is the <i>most</i> [23].		
FiteIson & McCarthyToward an Epistemic Foundation for Comparative Confidence25	Fitelson & McCarthyToward an Epistemic Foundation for Comparative Confidence26		
General Rackaround Representing $\succ \succ$ and \sim Extensic Foundations for \succ Extras Refs.	General Rackground Representing $\succ \succ$ and \sim Existemic Foundations for \succ Exists Refs		
• In their seminal paper, Kraft <i>et. al.</i> [22] refute de Finetti's	108************************************		
[3, 4] conjecture: $(\mathbb{C}_2) \Rightarrow (\mathbb{C}_4)$. In fact, they show $(\mathbb{C}_2) \Rightarrow (\mathbb{C}_3)$.			
• Their counterexample involves a linear order \succeq on an	0.8		
algebra \mathcal{B}_{32} generated by five states: $\{s_1, \ldots, s_5\}$.			
• We won't write down the entire linear order \succeq as this			
involves a complete ranking of 32 propositions. Instead, we	0.4		
focus only the following, salient 8-proposition fragment.			
$ \geq \qquad $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	• Simplest case of dF's Theorem [5]: $b(P) = x; b(\neg P) = y$.		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	• Simplest case of dF's Theorem [5]: $b(P) = x$; $b(\neg P) = y$. The diagonal lines are the <i>probabilistic</i> b's (on $\langle P, \neg P \rangle$).		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• Simplest case of dF's Theorem [5]: $b(P) = x$; $b(\neg P) = y$. The diagonal lines are the <i>probabilistic</i> b's (on $\langle P, \neg P \rangle$). • The two directions of de Finetti's theorem (for $\langle P, \neg P \rangle$) can be established as these two firming and this simplest		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• Simplest case of dF's Theorem [5]: $b(P) = x$; $b(\neg P) = y$. The diagonal lines are the <i>probabilistic</i> b's (on $\langle P, \neg P \rangle$). • The two directions of de Finetti's theorem (for $\langle P, \neg P \rangle$) can be established <i>via</i> these two figures. And, this simplest $(\langle P, \neg P \rangle)$ version of the Theorem <i>canaralizes</i> from the		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	 O.2 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 O.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 O.3 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 O.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 O.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 O.5 0.0 0.2 0.4 0.6 0.8 1.0 O.0 0.2 0.4 0.8 0.8 0.		

General Background Representing ≥, > and ~ Epistemic Foundations for ≥ Extras Refs 000 000000000000000000000000000000000000	General Background Representing ≽, > and ~ Epistemic Foundations for ≿ Extras Ref 000 00000000000 0000000000 0000000000 0000000000
• There are two, weaker <i>1</i> -dominance requirements that we discuss in the book [13]. These are as follows.	(\mathcal{R})
Strict Accuracy-Dominance Avoidance (SADA). \succeq should <i>not be strictly dominated</i> in inaccuracy (according to <i>1</i>). More formally, there should <i>not</i> exist a \succeq' (on \mathcal{A}) such that	$(WADA) \qquad \qquad (\mathfrak{C}_4) \longrightarrow (\mathfrak{C}_3)$
$(\forall w) [\mathcal{I}(\succeq', w) < \mathcal{I}(\succeq, w)].$	
• Of course, (SADA) is <i>strictly weaker</i> than (WADA). And, here is a requirement that is <i>even weaker</i> than (SADA).	$(\mathfrak{C}_2) \qquad \qquad$
• Let $\mathbf{M}(\succeq, w) \triangleq$ the <i>set</i> of \succeq 's inaccurate judgments at w .	(SADA)
Strong Strict Accuracy-Dominance Avoidance (SSADA). There should <i>not</i> exist a \succeq' on \mathcal{A} such that:	(\mathfrak{C}_1)
$(\forall w) [\mathbf{M}(\succeq', w) \subset \mathbf{M}(\succeq, w)].$	(SSADA) $(())$
• Some of our (WADA) results <i>also go through for</i> (SADA) and/or (SSADA). Finally, we give a complete, "big picture" of all the logical relations among all the requirements.	$(\mathbf{A}_1) \qquad (\mathbf{C}_0)$
Fitelson & McCarthy Toward an Epistemic Foundation for Comparative Confidence 29	Fitelson & McCarthy Toward an Epistemic Foundation for Comparative Confidence 30
General Rackground Representing $\succ \succ$ and \sim Existemic Foundations for \succ Extras Refs	General Rackground Representing $\succ \succ$ and \sim Extrac Ref
 R. Briggs, F. Cariani, K. Easwaran and B. Fitelson Individual Coherence and Group Coherence, to appear in Essays in Collective Epistemology, J. Lackey (ed.), OUP. 	 [12], The Axioms of Subjective Probability, Statistical Science, 1986. [13] B. Fitelson, Coherence, book manuscript, 2014. [14] D. F. J. The Albert G. Statistical Science and the above the science of the science o
[2] A. Capotorti and B. Vantaggi, Axiomatic characterization of partial ordinal relations, International Journal of Approximate Reasoning 2000	 [14] P. Forrest, The problem of representing incompletely ordered advastic systems, synthese, 1989. [15] J. Halpern, Reasoning about uncertainty, MIT Press, 2003.
 [3] B. de Finetti, Foresight: Its Logical Laws, Its Subjective Sources (1935), in H. Kyburg and H. Smokler (eds.), Studies in Subjective Probability, Wiley, 1964. 	[16] J. Hawthorne, The lockean thesis and the logic of belief, in F. Huber and C. Schmidt-Petri (eds.), Degrees of Belief, Springer, 2009.
[4], La "logica del plausibile" secondo la concezione di Polya, Societa Italiana per il Progresso	[17] T. Icard, <i>Pragmatic Considerations on Comparative Confidence</i> , 2014, manuscript.
aelle Scienze, 1951. [5] Theory of probability Wiley 1970	[19], Accuracy and Coherence: Prospects for an Alethic Epistemology of Partial Belief, in
 [6] M. Deza and E. Deza, <i>Encyclopedia of Distances</i>, Springer, 2009. 	F. Huber and C. Schmidt-Petri (<i>eds.</i>), <i>Degrees of Belief</i> , Springer, 2009.
[7] C. Duddy and A. Piggins, A measure of distance between judgment sets, Social Choice and	[21] J.M. Keynes, A Treatise on Probability, MacMillan, 1921.
[8] K. Easwaran, Dr. Truthlove or: How I Learned to Stop Worrying and Love Bayesian Probability, 2012.	[22] C. Kraft, J. Pratt and A. Seidenberg, Intuitive Probability on Finite Sets, The Annals of Mathematical Statistics, 1959.
2013, manuscript.	[23] K. Lehrer and C. Wagner, Intransitive Indifference: The Semi-Order Problem, Synthese, 1985.
Dialectica, 2012.	 [24] L. Savage, The Foundations of Statistics, Dover, 1972. [25] D. Scott, Massurament Structures and Linear Inequalities, Journal of Mathematical Psych, 1964.
 [10], Accuracy, Coherence & Evidence, to appear in Oxford Studies in Epistemology (Volume 5), T. Szabo Gendler & J. Hawthorne (eds.), Oxford University Press, 2013. 	 [25] D. Scott, measurement structures and Linear inequalities, journal of mathematical Psych., 1964. [26] S. Wong, Y. Yao, P. Bollmann and H. Burger, Axiomatization of qualitative belief structure, IEEE Transactions on Systems, Man and Cybernetics, 1991.
[11] P. Fishburn. Weak qualitative probability on finite sets. Annals of Mathematical Statistics, 1969	
	[27] P. Young, Optimal voting rules, The Journal of Economic Perspectives, 1995.