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Motivation I

Graded truth (informal)

Together with a notion of all-or-nothing truth according to which truth is
bivalent, there is a notion of truth coming in degrees:

Italy is shaped like a boot.
Stanley Kubrick at the end of his life was bald.

The color theme of these slides is blue.

Graded truth (preformal)
I qualitative or comparative: φ is more true than ψ.
I quantitative: φ is true x, typically with x ∈ [0, 1]
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Motivation II

Quantitative graded truth and probability

Formal overlap and conceptual confusion in the formalisation of imprecise
and uncertain reasoning.

Outline

Yet again on probability and many-valued logics . . .

. . . with something new

1. a novel argument supporting the distinction between probabilities and
degrees of truth,

2. how to bridge the formal and conceptual distinction.
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Classical probabilistic logic

Language
I L = {p1, p2, . . . }
I ¬, →
I SL
I ⊥

Definable connectives
I θ ∨ φ := ¬θ → φ

I θ ∧ φ := ¬(¬θ ∨ ¬φ)

I > := ¬⊥

A probability function over L is a map P : SL → [0, 1] satisfying for all
θ, φ ∈ SL

(P1) if |= θ then P (θ) = 1,

(P2) if |= ¬(θ ∧ φ) then P (θ ∨ φ) = P (θ) + P (φ).
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Real-valued Łukasiewicz logic

I v : SL → [0, 1]

1. v(⊥) = 0
2. v(¬θ) = 1− v(θ)

3. v(θ → φ) =

{
1, if v(θ) ≤ v(φ);
1− v(θ) + v(φ), otherwise.

4. v(θ ∨ φ) = min{1, v(θ) + v(φ)}
5. v(θ ∧ φ) = max{0, v(θ) + v(φ)− 1}

I |=∞ (⊂ |=)

For all θ, φ ∈ SL
(P1∗) if |=∞ θ then v(θ) = 1,

(P2∗) if |=∞ ¬(θ ∧ φ) then v(θ ∨ φ) = v(θ) + v(φ).
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Qualitative perspective

There are occasions, on the other hand, when it seems preferable to start
from a purely ordinal relation – i.e. a qualitative one – which either re-
places the quantitative notion (should one consider it to be meaningless,
or, anyway, if one simply wishes to avoid it), or is used as a first step
towards its definition. [. . . ] One could proceed in a similar manner for
probabilities, too. (de Finetti, 1935)

I intuitive appeal
I measurability issues
I axioms as properties
I independence from the numerical apparatus
I more fundamental level

Aim: shedding light on the quantitative side by means of representation
theorems
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General form of the representation

Qualitative perspective

I comparative judgments
I pairwise evaluation
I � ⊆ X2

Quantitative perspective

I numerical assignment
I pointwise evaluation
I Φ: X → R

Necessary and sufficient conditions on a relational structure 〈X,�〉 for the
existence of a(n equivalence class of a) real-valued function Φ such that for all
x, y ∈ X

x � y ⇐⇒ Φ(x) ≤ Φ(y).
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Numerical representability

I Φ weakly represents � if

x � y ⇒ Φ(x) ≥ Φ(y),

I Φ strongly represents � if

x � y ⇔ Φ(x) ≥ Φ(y).

We are interested in weak representability
I Strong representability requires some technical conditions which are not

relevant for our discussion and might be misleading.
I Focus: justifying the use of numbers, as values of a measure, starting

from plausible properties of the comparative notions.
I The notions are irreducibly comparative.
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Qualitative probability (de Finetti, 1931), (Savage, 1954)

I (A, S, ∅,c ,∪,∩) is an algebra of events
I � ⊆ A2 interpreted as being no less probable than
I θ � φ⇔def θ � φ and not φ � θ (more probable than)
I θ ∼ φ⇔def θ � φ and φ � θ (as probable as)

Definition

A binary relation � ⊆ A2 is a qualitative probability if it satisfies the
following

(QP1) � is total and transitive

(QP2) A � ∅, S � ∅
(QP3) if A ∩ C = ∅, B ∩ C = ∅ and A � B then A ∪ C � B ∪ C
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Qualitative probability (de Finetti, 1931), (Savage, 1954)

Theorem

If � ⊆ A2 is a qualitative probability and

(QP?) for each n ≥ 2, there exists a complete class of n incompatible
events equally probable,

then there exists a unique function P : A → [0, 1] such that for all A,B ∈ A
I P (S) = 1,
I P (A) ≥ 0,
I if A ∩B = ∅ then P (A ∪B) = P (A) + P (B),

and
A � B ⇒ P (A) ≥ P (B).
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Qualitative probability: logical reformulation

If � ⊆ SL2 satisfies

(QLP0) |= θ ⇒ θ ∼ >
(QLP1) � is total and transitive

(QLP2) > � θ, > � ⊥
(QLP3) |= ¬(θ ∧ χ), |= ¬(φ ∧ χ), θ � φ⇒ θ ∨ χ � φ ∨ χ

(QLP?) for all n ≥ 2, there exist n events θ1, . . . , θn ∈ SL such that

(i) |=
∨n

i=1 θi — collectively exhaustive,
(ii) |= ¬(θi ∧ θj) for i 6= j — mutually exclusive,
(iii) θi ∼ θj for i 6= j — equiprobable.

then there exists a unique logical probability function P : SL → [0, 1] such
that

θ � φ⇒ P (θ) ≥ P (φ).
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The assumption ?

(QLP?) for all n ≥ 2, there exist n events θ1, . . . , θn ∈ SL such that

(i) |=
∨n

i=1 θi — collectively exhaustive,
(ii) |= ¬(θi ∧ θj) for i 6= j — mutually exclusive,
(iii) θi ∼ θj for i 6= j — equiprobable.

I Strong structural assumption (de Finetti, 1931) (Koopman, 1940)
(Savage, 1954).

I Its intuitive meaning is more compelling than other proposals (Kraft,
Pratt & Seidenberg, 1959) (Scott, 1964).

I Set-theoretic perspective: sequences of tosses of a fair coin
I Logical perspective: atoms?!

I infinite partitions can be obtained by allowing for infinitary
connectives (Scott & Krauss, 1966)

I equiprobability of logical valuations?
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Qualitative truth (ongoing work)

I � ⊆ SL interpreted as being no less true than

If � ⊆ SL2 satisfies

(T0) |=∞ θ ⇒ θ ∼ >
(T1) � is total and transitive

(T2) > � θ, > � ⊥
(T3) θ � φ⇒ θ ∨ χ � φ ∨ χ
(T4) θ � φ⇒ ¬φ � ¬θ
(T5) (θ → φ) ∼ > ⇒ θ � φ

then there exists a unique Łukasiewicz valuation v : SL → [0, 1] such that for
all θ, φ ∈ SL

θ � φ⇒ v(θ) ≥ v(φ).
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Comparison of comparisons I

More or less probable
(QLP0) |= θ ⇒ θ ∼ >

(QLP1) � is total and transitive

(QLP2) > � θ, > � ⊥

(QLP3) |= ¬(θ ∧ χ), |= ¬(φ ∧ χ),
θ � φ⇒ θ ∨ χ � φ ∨ χ

(QLP?) . . . uniform partitions . . .

More or less true
(T0) |=∞ θ ⇒ θ ∼ >

(T1) � is total and transitive

(T2) > � θ, > � ⊥

(T3) θ � φ⇒ θ ∨ χ � φ ∨ χ

(T4) θ � φ⇒ ¬φ � ¬θ

(T5) (θ → φ) ∼ > ⇒ θ � φ

Strategy of the proof
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Comparison of comparisons II

More or less probable
(QLP0) |= θ ⇒ θ ∼ >

(QLP1) � is total and transitive

(QLP2) > � θ, > � ⊥

(QLP3) |= ¬(θ ∧ χ), |= ¬(φ ∧ χ),
θ � φ⇒ θ ∨ χ � φ ∨ χ

(QLP?) . . . uniform partitions . . .

More or less true
(T0) |=∞ θ ⇒ θ ∼ >

(T1) � is total and transitive

(T2) > � θ, > � ⊥

(T3) θ � φ⇒ θ ∨ χ � φ ∨ χ

(T4) θ � φ⇒ ¬φ � ¬θ

(T5) (θ → φ) ∼ > ⇒ θ � φ

Additivity and normalisation
I compositionality
I (QLP0) and (T3) are incompatible:

If � ⊆ SL2 satisfies (T1)–(T5) and (T0′) |= θ ⇒ θ ∼ > then there exists a
unique classical valuation representing it.

I to be or not to be compositional? — (Edgington, 1997) (Bennett, Paris
& Vencovská, 2000)
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Interpretation

Belief and truth

Belief Truth
All-or-nothing belief, disbelief, suspension of judgment bivalent truth

Qualitative more or less probable more or less true
Quantitative credences, degrees of belief degrees of truth

I qualitative probability can be interpreted subjectively as comparative
confidence

I graded truth can be interpreted objectively as graded occurrence

Not only objective/subjective
I graded truth and objective chance
I objective and agent-independent orderings
I the key distinction is to be found elsewhere
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De Finetti, B. (1980). Probabilità. Enciclopedia Einaudi, 1146-1187.
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Comparison of comparisons III

More or less probable
If � ⊆ SL2 satisfies

(QLP0) |= θ ⇒ θ ∼ >

(QLP1) � is total and transitive

(QLP2) > � θ, > � ⊥

(QLP3) |= ¬(θ ∧ χ), |= ¬(φ ∧ χ),
θ � φ⇒ θ ∨ χ � φ ∨ χ

(QLP?) . . . uniform partitions . . .

then there exists a unique logical probability
function P : SL → [0, 1] such that

θ � φ⇒ P (θ) ≥ P (φ).

More or less true
If � ⊆ SL2 satisfies

(T0) |=∞ θ ⇒ θ ∼ >

(T1) � is total and transitive

(T2) > � θ, > � ⊥

(T3) θ � φ⇒ θ ∨ χ � φ ∨ χ

(T4) θ � φ⇒ ¬φ � ¬θ

(T5) (θ → φ) ∼ > ⇒ θ � φ

then there exists a unique Łukasiewicz
valuation v : SL → [0, 1] such that for all
θ, φ ∈ SL

θ � φ⇒ v(θ) ≥ v(φ).

Layers: logical indeterminacy and uncertainty
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Bridges

I Many-valued or fuzzy events — e.g. (Mundici, 2006)

I Plausibility measures (Friedman & Halpern, 1995)

I Fuzzy epistemicism (MacFarlane, 2010)

I Graded truth as objective probability (ongoing work)
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Conclusion

Probability and graded truth from a qualitative perspective:

I Formal overlapping and conceptual differences between probabilities and
degrees of truth are best articulated at a qualitative level of analysis.

I The framework also suggests the conditions under which the distinction
can be bridged.

Thanks!
rossella.marrano@gmail.com
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