Probability and Graded Truth. A Qualitative Perspective.

Rossella Marrano

Scuola Normale Superiore, Pisa

Joint work with Hykel Hosni
20 September 2015

Motivation I

Graded truth (informal)

Together with a notion of all-or-nothing truth according to which truth is bivalent, there is a notion of truth coming in degrees:

Italy is shaped like a boot. Stanley Kubrick at the end of his life was bald. The color theme of these slides is blue.

Motivation I

Graded truth (informal)

Together with a notion of all-or-nothing truth according to which truth is bivalent, there is a notion of truth coming in degrees:

Italy is shaped like a boot. Stanley Kubrick at the end of his life was bald. The color theme of these slides is blue.

Graded truth (preformal)

- qualitative or comparative: ϕ is more true than ψ.
- quantitative: ϕ is true x, typically with $x \in[0,1]$

Motivation II

Quantitative graded truth and probability
Formal overlap and conceptual confusion in the formalisation of imprecise and uncertain reasoning.

Motivation II

Quantitative graded truth and probability
Formal overlap and conceptual confusion in the formalisation of imprecise and uncertain reasoning.

Outline
Yet again on probability and many-valued logics ...

Motivation II

Quantitative graded truth and probability

Formal overlap and conceptual confusion in the formalisation of imprecise and uncertain reasoning.

Outline

Yet again on probability and many-valued logics ...
... with something new

1. a novel argument supporting the distinction between probabilities and degrees of truth,
2. how to bridge the formal and conceptual distinction.

Classical probabilistic logic

Language

- $\mathcal{L}=\left\{p_{1}, p_{2}, \ldots\right\}$
- \neg, \rightarrow
- $\mathcal{S L}$
- \perp

Definable connectives

- $\theta \vee \phi:=\neg \theta \rightarrow \phi$
- $\theta \wedge \phi:=\neg(\neg \theta \vee \neg \phi)$
- $\top:=\neg \perp$

Classical probabilistic logic

Language

- $\mathcal{L}=\left\{p_{1}, p_{2}, \ldots\right\}$
$\rightarrow \neg, \rightarrow$
- $\mathcal{S L}$
- \perp

Classical logic

- $v: \mathcal{S L} \rightarrow\{0,1\}$ with truth-tables
- $\mid=$

Definable connectives

- $\theta \vee \phi:=\neg \theta \rightarrow \phi$
- $\theta \wedge \phi:=\neg(\neg \theta \vee \neg \phi)$
- $\top:=\neg \perp$

Classical probabilistic logic

Language

- $\mathcal{L}=\left\{p_{1}, p_{2}, \ldots\right\}$
- \neg, \rightarrow
- $\mathcal{S L}$
- \perp

Classical logic

- $v: \mathcal{S L} \rightarrow\{0,1\}$ with truth-tables
- $=$

A probability function over \mathcal{L} is a map $P: \mathcal{S} \mathcal{L} \rightarrow[0,1]$ satisfying for all $\theta, \phi \in \mathcal{S} \mathcal{L}$

$$
\begin{aligned}
& \text { (P1) if } \models \theta \text { then } P(\theta)=1 \\
& \text { (P2) if } \models \neg(\theta \wedge \phi) \text { then } P(\theta \vee \phi)=P(\theta)+P(\phi)
\end{aligned}
$$

Real-valued Łukasiewicz logic

- $v: \mathcal{S} \mathcal{L} \rightarrow[0,1]$

1. $v(\perp)=0$
2. $v(\neg \theta)=1-v(\theta)$
3. $v(\theta \rightarrow \phi)= \begin{cases}1, & \text { if } v(\theta) \leq v(\phi) ; \\ 1-v(\theta)+v(\phi), & \text { otherwise. }\end{cases}$
4. $v(\theta \vee \phi)=\min \{1, v(\theta)+v(\phi)\}$
5. $v(\theta \wedge \phi)=\max \{0, v(\theta)+v(\phi)-1\}$

Real-valued Łukasiewicz logic

- $v: \mathcal{S} \mathcal{L} \rightarrow[0,1]$

1. $v(\perp)=0$
2. $v(\neg \theta)=1-v(\theta)$
3. $v(\theta \rightarrow \phi)= \begin{cases}1, & \text { if } v(\theta) \leq v(\phi) ; \\ 1-v(\theta)+v(\phi), & \text { otherwise. }\end{cases}$
4. $v(\theta \vee \phi)=\min \{1, v(\theta)+v(\phi)\}$
5. $v(\theta \wedge \phi)=\max \{0, v(\theta)+v(\phi)-1\}$

- $\models_{\infty}(\subset \models)$

Real-valued Łukasiewicz logic

- $v: \mathcal{S L} \rightarrow[0,1]$

1. $v(\perp)=0$
2. $v(\neg \theta)=1-v(\theta)$
3. $v(\theta \rightarrow \phi)= \begin{cases}1, & \text { if } v(\theta) \leq v(\phi) ; \\ 1-v(\theta)+v(\phi), & \text { otherwise. }\end{cases}$
4. $v(\theta \vee \phi)=\min \{1, v(\theta)+v(\phi)\}$
5. $v(\theta \wedge \phi)=\max \{0, v(\theta)+v(\phi)-1\}$

- $\models_{\infty}(\subset \models)$

For all $\theta, \phi \in \mathcal{S} \mathcal{L}$

$$
\begin{aligned}
& \left(\mathrm{P} 1^{*}\right) \text { if }=_{\infty} \theta \text { then } v(\theta)=1, \\
& \left(\mathrm{P} 2^{*}\right) \text { if }=_{\infty} \neg(\theta \wedge \phi) \text { then } v(\theta \vee \phi)=v(\theta)+v(\phi) .
\end{aligned}
$$

Qualitative perspective

There are occasions, on the other hand, when it seems preferable to start from a purely ordinal relation - i.e. a qualitative one - which either replaces the quantitative notion (should one consider it to be meaningless, or, anyway, if one simply wishes to avoid it), or is used as a first step towards its definition. [...] One could proceed in a similar manner for probabilities, too. (de Finetti, 1935)

Qualitative perspective

There are occasions, on the other hand, when it seems preferable to start from a purely ordinal relation - i.e. a qualitative one - which either replaces the quantitative notion (should one consider it to be meaningless, or, anyway, if one simply wishes to avoid it), or is used as a first step towards its definition. [...] One could proceed in a similar manner for probabilities, too. (de Finetti, 1935)

- intuitive appeal
- measurability issues
- axioms as properties
- independence from the numerical apparatus
- more fundamental level

Qualitative perspective

There are occasions, on the other hand, when it seems preferable to start from a purely ordinal relation - i.e. a qualitative one - which either replaces the quantitative notion (should one consider it to be meaningless, or, anyway, if one simply wishes to avoid it), or is used as a first step towards its definition. [...] One could proceed in a similar manner for probabilities, too. (de Finetti, 1935)

- intuitive appeal
- measurability issues
- axioms as properties
- independence from the numerical apparatus
- more fundamental level

Aim: shedding light on the quantitative side by means of representation theorems

General form of the representation

Qualitative perspective

- comparative judgments
- pairwise evaluation
- $\preceq \subseteq X^{2}$

Quantitative perspective

- numerical assignment
- pointwise evaluation
- $\Phi: X \rightarrow \mathbb{R}$

Necessary and sufficient conditions on a relational structure $\langle X, \preceq\rangle$ for the existence of a(n equivalence class of a) real-valued function Φ such that for all $x, y \in X$

$$
x \preceq y \Longleftrightarrow \Phi(x) \leq \Phi(y) .
$$

Numerical representability

- Φ weakly represents $\succeq \mathrm{if}$

$$
x \succeq y \Rightarrow \Phi(x) \geq \Phi(y)
$$

- Φ strongly represents \succeq if

$$
x \succeq y \Leftrightarrow \Phi(x) \geq \Phi(y)
$$

Numerical representability

- Φ weakly represents \succeq if

$$
x \succeq y \Rightarrow \Phi(x) \geq \Phi(y)
$$

- Φ strongly represents \succeq if

$$
x \succeq y \Leftrightarrow \Phi(x) \geq \Phi(y)
$$

We are interested in weak representability

- Strong representability requires some technical conditions which are not relevant for our discussion and might be misleading.
- Focus: justifying the use of numbers, as values of a measure, starting from plausible properties of the comparative notions.
- The notions are irreducibly comparative.

Qualitative probability (de Finetti, 1931), (Savage, 1954)

- $\left(\mathcal{A}, S, \emptyset,{ }^{c}, \cup, \cap\right)$ is an algebra of events
- $\succeq \subseteq \mathcal{A}^{2}$ interpreted as being no less probable than
- $\theta \succ \phi \Leftrightarrow_{\text {def }} \theta \succeq \phi$ and not $\phi \succeq \theta$ (more probable than)
- $\theta \sim \phi \Leftrightarrow_{\text {def }} \theta \preceq \phi$ and $\phi \preceq \theta$ (as probable as)

Qualitative probability (de Finetti, 1931), (Savage, 1954)

- $\left(\mathcal{A}, S, \emptyset,{ }^{c}, \cup, \cap\right)$ is an algebra of events
- $\succeq \subseteq \mathcal{A}^{2}$ interpreted as being no less probable than
- $\theta \succ \phi \Leftrightarrow_{\text {def }} \theta \succeq \phi$ and not $\phi \succeq \theta$ (more probable than)
- $\theta \sim \phi \Leftrightarrow_{\text {def }} \theta \preceq \phi$ and $\phi \preceq \theta$ (as probable as)

Definition

A binary relation $\succeq \subseteq \mathcal{A}^{2}$ is a qualitative probability if it satisfies the following
(QP1) \succeq is total and transitive
(QP2) $A \succeq \emptyset, S \succ \emptyset$
(QP3) if $A \cap C=\emptyset, B \cap C=\emptyset$ and $A \succeq B$ then $A \cup C \succeq B \cup C$

Qualitative probability (de Finetti, 1931), (Savage, 1954)

Theorem

If $\succeq \subseteq \mathcal{A}^{2}$ is a qualitative probability and
($\mathrm{QP} \star$) for each $n \geq 2$, there exists a complete class of n incompatible events equally probable,
then there exists a unique function $P: \mathcal{A} \rightarrow[0,1]$ such that for all $A, B \in \mathcal{A}$

- $P(S)=1$,
- $P(A) \geq 0$,
- if $A \cap B=\emptyset$ then $P(A \cup B)=P(A)+P(B)$,
and

$$
A \succeq B \Rightarrow P(A) \geq P(B)
$$

Qualitative probability: logical reformulation

If $\succeq \subseteq \mathcal{S} \mathcal{L}^{2}$ satisfies
(QLP0) $\models \theta \Rightarrow \theta \sim \top$
(QLP1) \succeq is total and transitive
(QLP2) $\top \succeq \theta, \top \succ \perp$
(QLP3) $\vDash \neg(\theta \wedge \chi), \models \neg(\phi \wedge \chi), \theta \succeq \phi \Rightarrow \theta \vee \chi \succeq \phi \vee \chi$
(QLP \star) for all $n \geq 2$, there exist n events $\theta_{1}, \ldots, \theta_{n} \in \mathcal{S} \mathcal{L}$ such that
(i) $\models \bigvee_{i=1}^{n} \theta_{i}$ - collectively exhaustive,
(ii) $\vDash \neg\left(\theta_{i} \wedge \theta_{j}\right)$ for $i \neq j$ mutually exclusive, (iii) $\theta_{i} \sim \theta_{j}$ for $i \neq j$ - equiprobable.
then there exists a unique logical probability function $P: \mathcal{S} \mathcal{L} \rightarrow[0,1]$ such that

$$
\theta \succeq \phi \Rightarrow P(\theta) \geq P(\phi) .
$$

The assumption \star

(QLP \star) for all $n \geq 2$, there exist n events $\theta_{1}, \ldots, \theta_{n} \in \mathcal{S} \mathcal{L}$ such that
(i) $\models \bigvee_{i=1}^{n} \theta_{i}$ - collectively exhaustive,
(ii) $\vDash \neg\left(\theta_{i} \wedge \theta_{j}\right)$ for $i \neq j-$ mutually exclusive, (iii) $\theta_{i} \sim \theta_{j}$ for $i \neq j$ - equiprobable.

- Strong structural assumption (de Finetti, 1931) (Koopman, 1940) (Savage, 1954).
- Its intuitive meaning is more compelling than other proposals (Kraft, Pratt \& Seidenberg, 1959) (Scott, 1964).
- Set-theoretic perspective: sequences of tosses of a fair coin
- Logical perspective: atoms?!
- infinite partitions can be obtained by allowing for infinitary connectives (Scott \& Krauss, 1966)
- equiprobability of logical valuations?

Qualitative truth (ongoing work)

- $\succeq \subseteq \mathcal{S L}$ interpreted as being no less true than

Qualitative truth (ongoing work)

- $\succeq \subseteq \mathcal{S L}$ interpreted as being no less true than

If $\succeq \subseteq \mathcal{S} \mathcal{L}^{2}$ satisfies
(T0) $\models_{\infty} \theta \Rightarrow \theta \sim T$
(T1) \succeq is total and transitive
(T2) $\top \succeq \theta, \top \succ \perp$
(T3) $\theta \succeq \phi \Rightarrow \theta \vee \chi \succeq \phi \vee \chi$
(T4) $\theta \succeq \phi \Rightarrow \neg \phi \succeq \neg \theta$
(T5) $(\theta \rightarrow \phi) \sim \mathrm{T} \Rightarrow \theta \preceq \phi$
then there exists a unique Łukasiewicz valuation $v: \mathcal{S L} \rightarrow[0,1]$ such that for all $\theta, \phi \in \mathcal{S L}$

$$
\theta \succeq \phi \Rightarrow v(\theta) \geq v(\phi) .
$$

Comparison of comparisons I

More or less probable
(QLP0) $\vDash \theta \Rightarrow \theta \sim \top$
(QLP1) \succeq is total and transitive
(QLP2) $\top \succeq \theta, \top \succ \perp$
(QLP3) $\models \neg(\theta \wedge \chi), \models \neg(\phi \wedge \chi)$, $\theta \succeq \phi \Rightarrow \theta \vee \chi \succeq \phi \vee \chi$
(QLP \star) ... uniform partitions ...

More or less true
(T0) $\models_{\infty} \theta \Rightarrow \theta \sim \top$
(T1) \succeq is total and transitive
(T2) $\top \succeq \theta, \top \succ \perp$
(T3) $\theta \succeq \phi \Rightarrow \theta \vee \chi \succeq \phi \vee \chi$
(T4) $\theta \succeq \phi \Rightarrow \neg \phi \succeq \neg \theta$
(T5) $(\theta \rightarrow \phi) \sim \top \Rightarrow \theta \preceq \phi$

Comparison of comparisons I

More or less probable

$$
\begin{aligned}
\text { (QLP0) } & \models \theta \Rightarrow \theta \sim \top \\
\text { (QLP1) } & \succeq \text { is total and transitive } \\
\text { (QLP2) } & \top \succeq \theta, \top \succ \perp \\
\text { (QLP3) } & \models \neg(\theta \wedge \chi), \models \neg(\phi \wedge \chi), \\
& \theta \succeq \phi \Rightarrow \theta \vee \chi \succeq \phi \vee \chi
\end{aligned}
$$

(QLP \star) ... uniform partitions ...

More or less true
(T0) $\models_{\infty} \theta \Rightarrow \theta \sim \top$
(T1) \succeq is total and transitive
(T2) $\top \succeq \theta, \top \succ \perp$
(T3) $\theta \succeq \phi \Rightarrow \theta \vee \chi \succeq \phi \vee \chi$
(T4) $\theta \succeq \phi \Rightarrow \neg \phi \succeq \neg \theta$
(T5) $(\theta \rightarrow \phi) \sim \top \Rightarrow \theta \preceq \phi$

Strategy of the proof

Comparison of comparisons II

More or less probable
(QLP0) $\vDash \theta \Rightarrow \theta \sim \top$
(QLP1) \succeq is total and transitive
(QLP2) $\top \succeq \theta, \top \succ \perp$
(QLP3) $\models \neg(\theta \wedge \chi), \models \neg(\phi \wedge \chi)$, $\theta \succeq \phi \Rightarrow \theta \vee \chi \succeq \phi \vee \chi$
(QLP \star) ... uniform partitions ...

More or less true
(T0) $\models_{\infty} \theta \Rightarrow \theta \sim \top$
(T1) \succeq is total and transitive
(T2) $\top \succeq \theta, \top \succ \perp$
(T3) $\theta \succeq \phi \Rightarrow \theta \vee \chi \succeq \phi \vee \chi$
(T4) $\theta \succeq \phi \Rightarrow \neg \phi \succeq \neg \theta$
(T5) $(\theta \rightarrow \phi) \sim \top \Rightarrow \theta \preceq \phi$

Additivity and normalisation

- compositionality
- (QLP0) and (T3) are incompatible:

If $\succeq \subseteq \mathcal{S} \mathcal{L}^{2}$ satisfies $(\mathrm{T} 1)-(\mathrm{T} 5)$ and $\left(\mathrm{T} 0^{\prime}\right) \vDash \theta \Rightarrow \theta \sim \top$ then there exists a unique classical valuation representing it.

- to be or not to be compositional? - (Edgington, 1997) (Bennett, Paris \& Vencovská, 2000)

Interpretation

Belief and truth

	Belief	Truth
All-or-nothing	belief, disbelief, suspension of judgment	bivalent truth
Qualitative	more or less probable	more or less true
Quantitative	credences, degrees of belief	degrees of truth

Interpretation

Belief and truth

	Belief	Truth
All-or-nothing	belief, disbelief, suspension of judgment	bivalent truth
Qualitative	more or less probable	more or less true
Quantitative	credences, degrees of belief	degrees of truth

- qualitative probability can be interpreted subjectively as comparative confidence
- graded truth can be interpreted objectively as graded occurrence

Interpretation

Belief and truth

	Belief	Truth
All-or-nothing	belief, disbelief, suspension of judgment	bivalent truth
Qualitative	more or less probable	more or less true
Quantitative	credences, degrees of belief	degrees of truth

- qualitative probability can be interpreted subjectively as comparative confidence
- graded truth can be interpreted objectively as graded occurrence

Not only objective/subjective

- graded truth and objective chance
- objective and agent-independent orderings
- the key distinction is to be found elsewhere

Figura 3.
I tre tivelli di conoscenza di un evento.

De Finetti, B. (1980). Probabilità. Enciclopedia Einaudi, 1146-1187.

Comparison of comparisons III

More or less probable
If $\succeq \subseteq \mathcal{S L}^{2}$ satisfies
(QLP0) $\vDash \theta \Rightarrow \theta \sim \top$
(QLP1) \succeq is total and transitive
(QLP2) $\top \succeq \theta, \top \succ \perp$
(QLP3) $\vDash \neg(\theta \wedge \chi), \models \neg(\phi \wedge \chi)$, $\theta \succeq \phi \Rightarrow \theta \vee \chi \succeq \phi \vee \chi$
($\mathrm{QLP} *$) ... uniform partitions ...
then there exists a unique logical probability function $P: \mathcal{S} \mathcal{L} \rightarrow[0,1]$ such that

$$
\theta \succeq \phi \Rightarrow P(\theta) \geq P(\phi)
$$

More or less true
If $\succeq \subseteq \mathcal{S L}^{2}$ satisfies
(T0) $\models_{\infty} \theta \Rightarrow \theta \sim \top$
(T1) \succeq is total and transitive
(T2) $\top \succeq \theta, \top \succ \perp$
(T3) $\theta \succeq \phi \Rightarrow \theta \vee \chi \succeq \phi \vee \chi$
(T4) $\theta \succeq \phi \Rightarrow \neg \phi \succeq \neg \theta$
(T5) $(\theta \rightarrow \phi) \sim \top \Rightarrow \theta \preceq \phi$
then there exists a unique Eukasiewicz valuation $v: \mathcal{S} \mathcal{L} \rightarrow[0,1]$ such that for all $\theta, \phi \in \mathcal{S} \mathcal{L}$

$$
\theta \succeq \phi \Rightarrow v(\theta) \geq v(\phi)
$$

Layers: logical indeterminacy and uncertainty

Bridges

- Many-valued or fuzzy events - e.g. (Mundici, 2006)
- Plausibility measures (Friedman \& Halpern, 1995)
- Fuzzy epistemicism (MacFarlane, 2010)
- Graded truth as objective probability (ongoing work)

Conclusion

Probability and graded truth from a qualitative perspective:

Conclusion

Probability and graded truth from a qualitative perspective:

- Formal overlapping and conceptual differences between probabilities and degrees of truth are best articulated at a qualitative level of analysis.
- The framework also suggests the conditions under which the distinction can be bridged.

Conclusion

Probability and graded truth from a qualitative perspective:

- Formal overlapping and conceptual differences between probabilities and degrees of truth are best articulated at a qualitative level of analysis.
- The framework also suggests the conditions under which the distinction can be bridged.

Thanks!

rossella.marrano@gmail.com

References I

```
A.D.C. Bennett, J.B. Paris, A. Vencovská.
A New Criterion for Comparing Fuzzy Logics for Uncertain Reasoning.
Journal of Logic, Language, and Information, 9, 31-63, }2000
B. de Finetti.
Sul significato soggettivo della probabilità.
Fundamenta Mathematicae, 17:289-329, }1931
D. Edgington.
Validity, Uncertainty and Vagueness.
Analysis, 52:4, 193-204, 1992.
T.L. Fine.
Theories of Probability. An Examination of Foundations.
Academic Press, New York and London, 1973.
T. Flaminio, L. Godo, H. Hosni.
On the logical structure of de Finetti's notion of event
Journal of Applied Logic, 12, 279-301, 2014.
N. Friedman, J.Y. Halpern.
Plausibility Measures: A User's Guide.
In Proc. Eleventh Conf. on Uncertainty in Artificial Intelligence (UAI 95).
P. Hájek.
Metamathematics of Fuzzy Logic.
Kluwer Academic Publishers, 1998.
B.O. Koopman.
The axioms and algebra of intuitive probability.
The Annals of Mathematics, 2nd Ser., Vol. 41, No. 2., pp. 269-292, }1940
```


References II

C.H. Kraft, J.W. Pratt, A. Seidenberg.

Intuitive probability on finite sets.
Annals of Mathematical Statistics 30, pp. 408-419, 1959.
J. MacFarlane.

Fuzzy Epistemicism.

In Richard Dietz \& Sebastiano Moruzzi (eds.), Cuts and Clouds. Vaguenesss, its Nature and its Logic. Oxford University Press, 2010.
D. Mundici.

Bookmaking over infinite-valued events.
International Journal of Approximate Reasoning, 43, 223-240, 2006.
J.B. Paris.

The uncertain reasoner's companion: A mathematical perspective.
Cambridge University Press, 1994.
L.J. Savage.

The Foundations of Statistics.
Dover, 2nd edition, 1972.
D. Scott.

Measurement models and linear inequalities.
Journal of Mathematical Psychology, 1, 233-47, 1964.
D. Scott, P. Krauss.

Assigning probabilities to logical formulas.
in Aspects of Inductive Logic, J. Hintikka and P. Suppes, eds., (North-Holland, Amsterdam), 219-264, 1966.

