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Background

I Learning and belief revision go their separate ways,

I conjecture dynamics is a common theme.

I What are the principles of this dynamics?
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I Learning and belief revision go their separate ways,

I conjecture dynamics is a common theme.

I What are the principles of this dynamics?
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Truth-tracking!



Epistemic Spaces and Observables

Definition
An epistemic space is a pair S = (S ,O) consisting of a state space (a set of
possible worlds) S and a countable set of observable properties O ⊆ P(S).
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Learning: Streams of Observables

Definition
Let S = (S ,O) be an epistemic space.

I A data stream is an infinite sequence ~O = (O0,O1, . . .) of data from O.

I A data sequence is a finite sequence σ = (σ0, . . . , σn).

Definition
Take S = (S ,O) and s ∈ S . A data stream ~O is:

I sound with respect to s iff every element listed in ~O is true in s.

I complete with respect to s iff every observable true in s is listed in ~O.

We assume that data streams are sound and complete.



Learning: Learners and Conjectures

Definition
Let S = (S ,O) be an epistemic space and let σ0, . . . , σn ∈ O. A learner is a
function L that on the input of S and data sequence (σ0, . . . , σn) outputs some
set of worlds L(S, (σ0, . . . , σn)) ⊆ S , called a conjecture.

Definition
S = (S ,O) is learnable by L if for every state s ∈ S we have that for every

sound and complete data stream ~O for s, there is n ∈ N s.t.:

L(S, (O0, . . . ,Ok)) = {s} for all k ≥ n.

An epistemic space S is learnable if it is learnable by a learner L.



Example of a Learnable Space

Let S = (S ,O) such that S = {sn | n ∈ N}, O = {pi | i ∈ N}, and for any
k ∈ N, pk = {si | 0 ≤ i ≤ k}. S is learnable.

p0 p1 p2 p3 p4
. . .
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Example of a Non-Learnable Space

Consider S = (S ,O), where S := {sn | n ∈ N} ∪ {s∞}, and O = {pi | i ∈ N},
and for any k ∈ N, pk := {sk , sk+1, . . .} ∪ {s∞}. S is not learnable.
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Questions, Answers, and Problems

Definition
A question Q is a partition of S , whose cells Ai are called answers to Q.
Given s ∈ A ⊆ S , A ∈ Q is called the answer to Q at s, denoted As .

Definition
Q′ is a refinement of Q if all answers of Q is a disjoint union of answers of Q′.

Definition
A problem P is a pair (S,Q) consisting of S = (S ,O) and Q over S .
P′ = (S,Q′) is a refinement of P = (S,Q) if Q′ is a refinement of Q.
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Solving in the Limit

Definition
A learning method L solves a problem P = (S,Q) in the limit iff for every state

s ∈ S and every data stream ~O for s, there exists some k ∈ N such that:

L(S, ~O[n]) ⊆ As for all n ≥ k.

A problem is solvable in the limit if there is a learner that solves it in the limit.



General Topology

Definition
A topology τ over a set S is a collection of subsets of S (open sets) s.t.:

1. ∅ ∈ τ ,

2. S ∈ τ ,

3. for any X ⊆ τ ,
⋃

X ∈ τ , and

4. for any finite X ⊆ τ we have
⋂

X ∈ τ.

Definition
Take a set X ⊆ S .

1. The interior of X : Int(X ) =
⋃
{U ∈ τ | U ⊆ X}.

2. A subset Y ⊆ S is closed if an only if its complement, Y c is open.

3. The closure of X : X = (Int(X c))c =
⋂
{Y | X ⊆ Y and Y is closed}.



Separability by observations: Illustration
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(a) t and u are not separable
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(c) strongly separated space, T1



Locally Closed and Constructible Sets

Definition
A topology τ is Td iff for every s ∈ S there is a U ∈ τ such that U \ {s} ∈ τ ,
i.e., for every s ∈ S there is a U ∈ τ such that {s} = U ∩ {s}.
Td is a separation property between T0 and T1.

Definition
A set A is locally closed if A = U ∩ C , where U is open and C is closed.

A set is constructible if it is a finite disjoint union of locally closet sets.

An ω-constructible set is a countable union of locally closed sets.
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The Topology Associated with an Epistemic Space

Definition
The topology τS associated with an epistemic space S = (S ,O) is a collection
of subsets of S of the following properties:

1. for any O ∈ O it is the case that O ∈ τS
2. ∅ ∈ τS,

3. S ∈ τS,

4. for any U ⊆ τS,
⋃

U ∈ τS, and

5. for any x , y ∈ τS we have x ∩ y ∈ τS.
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Characterization of Solvability in the Limit

Theorem
A problem P = (S,Q) is solvable in the limit iff Q has a locally closed
refinement.

Corollary
An epistemic space S = (S ,O) is learnable in the limit iff it satisfies the Td

separation axiom.
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Order-driven learning: Motivation

I Belief Revision: minimal states give beliefs.

I Computational Learning Theory: co-learning, learning by erasing.

I Philosophy of Science: Ockham’s razor.



Conditioning

Definition
Conditioning wrt a prior ≤ on S , is defined in the following way:

L≤(O1, . . . ,On) := Min≤

(
n⋂

i=1

Oi

)

whenever
⋂

i Oi has any minimal elements; and otherwise:

L≤(O1, . . . ,On) :=
n⋂

i=1

Oi .

Definition
Conditioning is said to be standard if the prior ≤ is well-founded.

Theorem
Non-standard conditioning is a universal problem solving method.
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Logic for Learnability

Since learnability is about potentially successful changes of beliefs
one expects some doxastic logic to capture it and to reason about it.



Relational semantics for modal logic

Definition (Syntax)

Take countable set of propositional symbols P.

ϕ := p | ¬ϕ | ϕ ∧ ϕ | �ϕ,

for all p ∈ P, the usual abbreviations are ∨, →, and ♦.

Definition (Semantics)

Given a model M = (W ,R, v), where v : P → ℘(W ), and a state x ∈W :

M, x |= p iff x ∈ v(p) for each p ∈ P
M, x |= ¬ϕ iff not M, x |= ϕ
M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ
M, x |= �ϕ iff for all y ∈W : if xRy then M, y |= ϕ
and dually:
M, x |= ♦ϕ iff there is y ∈W : xRy and M, y |= ϕ
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Some Axioms and Their Epistemic Meaning

Rules

(MP) if ` ϕ and ` ϕ→ ψ, then ` ψ
(N) if ` ϕ, then ` �ϕ

Axioms

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ) (omniscience)

(T) �ϕ→ ϕ (truthfullness/reflexivity)

(D) �ϕ→ ¬�¬ϕ (consistency/seriality)

(4) �ϕ→ ��ϕ (positive introspection/transitivity)

(5) ¬�ϕ→ �¬�ϕ (negative introspection/Euclidean-ness)

Ax is a logic of a class of models M iff Ax is sound and complete wrt M.
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Can we use modal logic on topologies?
Relational � vs Topological � := Int

�ϕ �ϕ

Definition
Let P be a set of propositional symbols. A topological model (or a
topo-model) M = (X ,O, v) is a topological space τ = (X ,O) together with a
valuation function v : P → ℘(X ).
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Topological Topo-semantics for Modal Logic

Definition
Truth of modal formulas is defined inductively at points x in a topo-model
M = (X ,O, v) in the following way:

M, x |= p iff x ∈ v(p) for each p ∈ P
M, x |= ¬ϕ iff not M, x |= ϕ
M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ
M, x |= �ϕ iff there is U ∈ τ(x ∈ U and for all y ∈ U: M, y |= ϕ)

and dually:
M, x |= ♦ϕ iff for all U ∈ τ(x ∈ U → there is y ∈ U: M, y |= ϕ)



Sound and Complete Topo-Axiomatizations

Rules

(MP) if ` ϕ and ` ϕ→ ψ, then ` ψ
(N) if ` ϕ, then ` �ϕ

Axioms

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(T) �ϕ→ ϕ

(D) �ϕ→ ¬�¬ϕ
(4) �ϕ→ ��ϕ

(5) ¬�ϕ→ �¬�ϕ

S4=
To
po

S4 is the topo-logic of all topological spaces (McKinsey & Tarski 1944).
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What about Td -spaces (the learning spaces)?

Td is not topo-definable.

Learnable spaces are not topo-definable.

Luckily, we can once again change the way we view �.

�ϕ �ϕ



Topological d-semantics

Definition
Truth of modal formulas is defined inductively at points x in a topo-model
M = (X , τ, v) in the following way:

M, x |=d p iff x ∈ v(p) for each p ∈ P
M, x |=d ¬ϕ iff not M, x |=d ϕ
M, x |=d ϕ ∧ ψ iff M, x |=d ϕ and M, x |=d ψ
M, x |=d �ϕ iff ∃U ∈ τ(x ∈ U & ∀y ∈ U − {x} M, y |=d ϕ)

and dually:

M, x |=d ♦ϕ iff ∀U ∈ τ(x ∈ U → ∃y ∈ U − {x} M, y |=d ϕ)



Sound and Complete d-Axiomatizations

Rules

(MP) if ` ϕ and ` ϕ→ ψ, then ` ψ
(N) if ` ϕ, then ` �ϕ

Axioms

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(4) �ϕ→ ��ϕ

K4 is the d-logic of all Td -spaces.

K4
=T

d



KD45 Doxastic d-logic (Steinvold 2006)

Because independent reasons (e.g., Stalnaker) one may want B:=� to be:

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)

(D) �ϕ→ ¬�¬ϕ
(4) �ϕ→ ��ϕ

(5) ¬�ϕ→ �¬�ϕ

Theorem (Steinsvold 2006)

KD45 is a sound and complete d-axiomatization of DSO spaces.

DSO stands for ‘derived sets are open’. DSO are Td -spaces (by 4), in which all
derived sets are open (5), except that there are no open singletons (D).



Questions

But DSO ⊂ Td .

So what do we talk about when we talk about beliefs in learning?

Should conjectures be interpreted as beliefs?

What if one restricts conjectures to only those which are ‘proper’ beliefs?
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Conclusions

I Topological characterization of learnability & solvability in the limit.

I Universality of conditioning as a problem solving method.

I Use of stratification-like topological techniques.

Moreover:

I Learnable spaces are Td .

I Td -spaces are not topo-definable.

I Learnability is not topo-definable.

I Learnability cannot be expressed by solely topo-definable belief operators.

I The existing topo- and d-logics of belief are to fluffy to capture learnability.
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