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Introduction

The model:

a population of players
a class of possible games

Interpretation: different types in the population represent
different reasoning/player types, or choice principles.
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Game theory

Definition (Games)

A game G is a tuple G = ⟨N,S1, ...,Sn, π1, ..., πn⟩

As usual, S ∶= S1 × ... × Sn.

Definition (Solution concepts)

Given a game G, a solution concept is a function F s.t. F (G) ⊆ S
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Nash equilibrium

Definition (Nash equilibrium)

A Nash equilibrium (NE) of a game G is a strategy profile s ∈ S s.t.
∀i ∈ N,∀s ′i ∈ Si , πi(s) ≥ πi(s ′i , s−i).
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Regret

Definition (Regret minimization [4])

Given a game G, the regret of a strategy si for player i is defined as
follows: regi(si) ∶= maxs−i πi(s∗i , s−i) − πi(si , s−i), where s∗i is i’s
best reply to s−i .
A strategy s ′i is a regret minimization strategy (regmini ) of player i
if regi(s ′i ) = minsi maxs−i πi(s∗i , s−i) − πi(si , s−i).

It will be useful to define a pairwise notion of regret.

Definition (Pairwise regret)

Given a game G, the regret of player i at profile (si , s−i) is:
regi(si , s−i) ∶= πi(s∗i , s−i) − πi(si , s−i).
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the Travellers’ dilemma

the Travellers’ dilemma (TD)

N = Ann,Bob

SAnn = SBob = {2, ...,100}

πi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

si if si = s−i

si + 2 if si < s−i

s−i − 2 if s−i < si
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the Travellers’ dilemma case

In the Travellers’ dilemma there is only one NE: (2,2).

All the other solution concepts grounded on expected utility that
solve the game (e.g., rationalizability, iterated elimination of weakly
dominated strategies, ...) return the outcome (2,2), given perfect
rationality of the players.

In the TD, iterated regret minimization gives the outcome (97,97).

However, in what follows we do not use the iterated version of
regret minimization (epistemically not well-founded).
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The pairwise notion defines a transformation of the game G into
another game Greg .
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Inside regret minimization

Regret minimization may be seen as a security strategy.

Definition (Maximin)

Let us define mini(si) = mins−i πi(si , s−i). Then we can say that
strategy s ′i is a maximin strategy of player i (maximini ) if
mini(s ′i ) = max si mins−i πi(si , s−i).

Remark: the maximin solution to the TD is also (2,2).
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Regret minimization as maximin
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Regret minimization as maximin
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Evolutionary analysis of choice principles: the intuition

So far we have seen that regret defines a specific transformation of
the game. This gives an intuition on how we might understand
different player types (or choice principles).
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Evolution of preferences

An objective fitness game G is played in the population and
each type θ is a preference type, i.e., θ ∶ S1 × ... × Sn → R.
The regret type has the subjective preference/utility function
θreg ∶ S1 × ... × Sn → R s.t. θreg(si , s−i) = −regi(si , s−i).
The π-type has the subjective utility function
θπ ∶ S1 × ... × Sn → R s.t. θπ(si , s−i) = πi(si , s−i).
Θ is the set of all preference types.
Indirect evolutionary approach.
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Meta-game

Tabella : A coordination game

G I II
I 1,1 0,0
II 0,0 2,2

Tabella : Chicken game

G’ I II
I 0,0 -1,1
II 1,-1 -2,-2
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A bit more formal: player types or choice principles

Given a class of fitness games G, we call player type a function
τ ∶ G→ Θ.
Intuition: a player type is interpreted as a way of thinking
across games, it is a thread, a red line that relates different
preference types across different games.
The regret type τ reg is defined s.t. for any G ∈ G,
τ reg(G) = θreg .
Similarly, for any G ∈ G, τπ(G) = θπ.
Let T denote the set of player types.
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Evolutionary analysis of choice principles: the model

G: class of symmetric two-by-two games
Players in the population are player types (i.e., τ -functions)
Radical uncertainty, i.e., no probabilistic beliefs (because of
lack of information, lack of cognitive capabilities, ...)
Because of their radical uncertainty we assume that players
play a security strategy wrt their player type (secure players).
At each time a game G is randomly selected from G and
players are randomly matched to play G.
The evolutionary fitness of each type is determined by the
fitness games G via the objective fitness function πG .
The players’ action choices across games depend on their
player type τ .
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Evolutionarily and neutrally stable strategies

Definition (ESS)

In evolutionary game theory a strategy s is said to be evolutionary
stable (ESS) if for all the other strategies t:

1. (s vs s) > (t vs s) or
2. (s vs s) = (t vs s) and (s vs t) > (t vs t)

Definition (NSS)

A strategy s is said to be neutrally stable (NSS) if for all the other
strategies t:

1. (s vs s) > (t vs s) or
2. (s vs s) = (t vs s) and (s vs t) ≥ (t vs t)
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Remark 1: the assumption of radical uncertainty is necessary to
distinguish τπ from τ reg . I.e., with probabilistic beliefs maximizing
expected utility would be the same as minimizing expected regret,
for any G.

Formally,

MaxExp(-Greg , µ) = argmaxi ∑j(-Greg
ij ⋅ µj) (by def)

= argmaxi ∑j(Gij −maxk(Gkj)) ⋅ µj
= argmaxi ∑j(Gij ⋅ µj −maxk(Gkj) ⋅ µj)
= argmaxi ∑j(Gij ⋅ µj)
=MaxExp(G, µ).
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Evolutionary analysis of choice principles

Just for fun, we define two other possible player types.

Definition (Competitive)

θcom ∶ S1 × S2 → R s.t. θcom(si , s−i) = πi(si , s−i) − π−i(si , s−i).

Definition (Altruistic)

θalt ∶ S1 × S2 → R s.t. θalt(si , s−i) = πi(si , s−i) + π−i(si , s−i).

Then we have: τ com(G) = θcom and τ alt(G) = θalt .
And the corresponding security strategies are
maxsi mins−i θ

com(si , s−i) and maxsi mins−i θ
alt(si , s−i).
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Two-by-two symmetric games: matrix of average payoffs

6.302

6.128

6.305

6.131

τ reg τπ

τ reg

τπ

τ com τ alt

τ com

τ alt

5.561

5.750

5.226

6.682

6.331

6.5366.3395.974

5.588 5.413 5.029 6.018

τ reg turns out to be the only evolutionary stable (secure) type.
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More in detail

More in detail:

Coordination games: a > c ,d > b

Anti-coordination games: a < c ,d < b

Strong dominance games: a > c ,d < b or a < c ,d > b

Weak dominance games: aut a − c = 0 aut d − b = 0
Indifferent games: a − c = 0 and d − b = 0
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Average payoff matrix for coordination games

7.676

6.430

5.914

6.367

τ reg τπ

τ reg

τπ

τ com τ alt

τ com

τ alt

5.794

6.341

6.346

6.436

5.905

5.9206.4346.462

5.441 4.281 4.237 5.833
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Average payoff matrix for anti-coordination games

4.751

5.275

6.202

5.288

τ reg τπ

τ reg

τπ

τ com τ alt

τ com

τ alt

4.713

5.405

3.426

6.141

5.314

7.0167.0745.342

5.207 5.303 5.387 5.270
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Average payoff matrix for strong dominance games

7.212

7.212

7.212

7.212

τ reg τπ

τ reg

τπ

τ com τ alt

τ com

τ alt

6.704

6.704

6.365

7.749

7.749

7.4466.9096.909

6.588 6.588 6.080 7.197
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Average payoff matrix for weak dominance games

6.402

6.155

6.342

6.099

τ reg τπ

τ reg

τπ

τ com τ alt

τ com

τ alt

5.187

5.120

4.706

7.168

6.735

6.7876.1575.959

5.710 5.492 4.532 6.486
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Average payoff matrix for indifferent games

5.833

5.833

5.75

5.75

τ reg τπ

τ reg

τπ

τ com τ alt

τ com

τ alt

3.541

3.541

3.541

7.166

7.166

7.1665.755.833

5.833 5.75 3.541 7.166
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These results from simulations can also be proven analytically.

Proposition 1

Fix T = {τπ, τ reg , τ com, τ alt} and G the class of symmetric 2 × 2
games with i.i.d. sampled payoffs from a finite or compact and
convex set of values. Then τ reg is the only evolutionary stable
(secure) type in the population.
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With probabilistic beliefs

Suppose now that players can have both probabilistic beliefs (in
some situations) and radical uncertainty (in other situations).
Moreover, suppose that the information (beliefs) available is
symmetric. Then, from Proposition 1 and Remark 1 it follows that:

Corollary 1

Fix T = {τπ, τ reg} and G the class of symmetric 2 × 2 games with
i.i.d. sampled payoffs from a finite or compact and convex set of
values. Then τ reg is the only evolutionary stable type in the
population.
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Digression: Ellsberg’s urn, ambiguity, and security strategies

R Y B

fR 100 0 0
fY 0 100 0
fRB 100 0 100
fYB 0 100 100

90 marbles in the urn, 30 red marbles.

The standard pattern is: fR ≻ fY and fRB ≺ fYB .

Preferences that satisfy this pattern are called uncertainty, or
ambiguity, averse.
The DM is not representable by a probability measure as in
Savage’s theorem.
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Digression: Ellsberg’s urn, ambiguity, and security strategies

It has been shown [3] that ambiguity averse preferences are
representable by a closed convex set P of probability measures
together with the maximin rule: Maxmin Expected Utility with
Non-unique Prior.

Working example: P = [(1
3 ,

2
3 ,0), (

1
3 ,0,

2
3)].

minµ∈P ∑s∈S u(fR(s)) ⋅ µ(s) = 100
3

minµ∈P ∑s∈S u(fY (s)) ⋅ µ(s) = 0

minµ∈P ∑s∈S u(fRB(s)) ⋅ µ(s) = 100
3

minµ∈P ∑s∈S u(fYB(s)) ⋅ µ(s) = 200
3
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Games with (some) uncertainty

In our framework, secure players are maxmin expected utility
players (à la Gilboa-Schmeidler) with P =∆(S−i).

Remark 2. τ reg (secure) players outperform τπ (secure) players for
any non-singleton set P .



model results comments conclusion

Outline

1 model

2 results

3 comments

4 conclusion



model results comments conclusion

On the model: Theoretical biology and behavioral ecology

Behavioral gambit in theoretical biology: the evolutionary
models put all the focus on the expressed behavior, and neglect
the underlying mechanisms that generate that behavior.

[...] we should expect animals to have evolved a set
of psychological mechanisms which enable them to
perform well on average across a range of different
circumstances. [2]

Psychological mechanisms and subjective conceptualizations as
the phenotype under selection.
Our model:

retains the indirect evolutionary approach
works on a class of possible games
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On the result: What is rational?

This talk takes the cue from a paper by J.Halpern and R.Pass [4]
introducing iterated regret minimization as a new solution concept.

The notion of regret had already been introduced in decision theory
as an alternative to expected utility theory.

Regret theory

[...] we shall challenge the idea that the conventional
axioms constitute the only acceptable basis for rational
choice under uncertainty. We shall argue that it is no less
rational to act in accordance with regret theory, and that
conventional expected utility theory therefore represents
an unnecessarily restrictive notion of rationality. [5]
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On the result: What is rational?

Rationality is a descriptive notion: maxEU fails.
(Btw, regret can explain and describe observed behavior better
than maxEU [4],[5].)

Rationality is a normative notion: apparently, EU-maximizers
can be outperformed by regret minimizers.
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Conclusion

We found subjective transformations of the games (”player
types”) that can perform better than the maximization of the
objective payoff.
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Evolution of preferences

These papers [i.e., [6];[1]] highlight the dependence of
indirect evolutionary models on observable preferences,
posing a challenge to the indirect evolutionary approach
that can be met only by allowing the question of
preference observability to be endogenously determined
within the model. [8]

The indirect evolutionary approach with unobservable
preferences gives us an alternative description of the
evolutionary process, one that is perhaps less reminiscent
of biological determinism, but leads to no new results. [7]
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Future work

more general G
different/asymmetric beliefs and theory of mind
other player types
adding learning/adaptation process
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Thanks for your attention.
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