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Introduction

Languages that can talk about probability
where probabilistic liars are expressible.

PrLiar:

The probability of this very sentence is less than 1/2.

or

Alice will get a promotion just if she believe she’ll get the
promotion to degree less than 1/2.

These languages are interesting because they’re expressively rich
But such probabilistic liars can cause problems. . .
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Why are they interesting?

Why such languages?

Consider formal languages that can express:

• “Annie believes to degree 0.99 that Billy believes to degree 1/2
that the coin will land heads.”

PA
=0.99

pPB
=1/2pHqq

• “Every sentence has non-negative probability.”

∀pϕq(PA
>0pϕq)

• “Alice’s degree of belief in this very sentence is less than 1/2.”

PrLiar↔ PA
<1/2pPrLiarq
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Why are they interesting?

What is probability?

Probability is some p : SentL → R with:

• p(ϕ) > 0 for all ϕ,

• p(q ∨ ¬q) = 1,

• p(ϕ ∨ ψ) = p(ϕ) + p(ψ) for ϕ and ψ logically incompatible.

Many possible applications of the probability notion. E.g.

• Subjective probability, degrees of belief of an agent,

• Objective chance,

• Evidential support,

• “Semantic probability”,

• . . .

I focus on subjective probability.
But work can apply to many probability notions.

Catrin Campbell-Moore Self-Referential Probabilities 3 / 22



Introduction Self-referential probabilities Semantics Kripkean semantics Conclusions

Some problems

Connection to the liar

Liar :

“This very sentence is not true”

Leads to contradictions under basic assumptions about truth.

PrLiar leads to contradictions between the axioms of probability
and some seemingly harmless principles.

E.g. Introspection:

The agent is certain about her own degrees of belief.

P<1/2pϕq =⇒ P=1pP<1/2pϕqq

and Deference, e.g. Lewis’s Principal Principle:

The agent A defers to B.

PA(pϕq | pPB
<1/2pϕqq) < 1/2
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Some problems

Important questions:

“How can one develop a formal semantics for this language?”

• Allows us to determine consistencies and inconsistencies.

• Should also develop a corresponding axiomatic theory.

“To what degree should a rational agent believe such sentences?”

• Are agents who do best from an accuracy or Dutch book
perspective representable in the proposed semantics?

• Caie (2013) argued that usual arguments for probabilistic
coherence, e.g. accuracy, need to be re-considered.
(Campbell-Moore, ta; Konek and Levinstein, ms).
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The setup

What we need in the underlying models

Want to develop a semantics that can model agents’ degrees of
belief.

Need to include facts about the probability directly into the model.

We will use a possible world structures.

Catrin Campbell-Moore Self-Referential Probabilities 6 / 22



Introduction Self-referential probabilities Semantics Kripkean semantics Conclusions

The setup

Underlying models

Probabilistic modal structures are used in economics and game
theory to model interacting agents’ beliefs about one another.

Definition (Probabilistic Modal Structure (finite))

H

¬H

1/2

1/2

1/2

1/2

• W a set, called “possible worlds”.

• For each w ∈W , a model M(w) of the
language without probability and truth
• We assume true arithmetic N.

• For each agent A and worlds w and v , a “degree
of accessibility of v from w” dA

w ,v

•
∑

v∈W dA
w ,v = 1

• More generally, mw probability measure over W .
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The setup

What does this presuppose?

Assumes that the agents are probabilistically coherent

and that they have common knowledge of probabilistic coherency.

So we’re modelling rational agents.
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A challenge

The desired semantics definition (which won’t work)

H

¬H

1/2

1/2

1/2

1/2

For example we want to be able to say:

• wH |= H,

• w¬H |= ¬H.

• wH |= P=1/2pHq.

Following this intuition, try to define:

w |= P=rpϕq ⇐⇒
∑
v |=ϕ

dw ,v = r

⇐⇒ mw{v |v |=ϕ}=r
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A challenge

This definition sometimes doesn’t work PrLiar↔ P<1/2pPrLiarq

w0 1

w0 |= PrLiar =⇒
∑

v |=PrLiar

dw0,v = 1

=⇒ w0 |= P=1pPrLiarq

=⇒ w0 6|= P<1/2pPrLiarq

=⇒ w0 6|= PrLiar

And similarly w0 6|= PrLiar =⇒ w0 |= PrLiar.

So this leads to contradictions.
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A challenge

The definition often doesn’t work

Similar problems for all finite probabilistic modal structures.
(For infinite: at least whenever the mw are all countably additive)

Otherwise the agent would have fully introspected certainty of
being probabilistic and satisfying

p(∀x ∈ Nϕ(x)) = lim
n

p(ϕ(0) ∧ . . . ∧ ϕ(n))).

Which is not possible because of:

I do not have fully introspected certainty in this very sentence.

γ ↔ ¬∀n ∈ N

n+1︷ ︸︸ ︷
P=1pP=1p. . .P=1pγqqq

(McGee, 1985; Halbach et al., 2003)
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A challenge

What to do?

Liar paradox leads to similar challenges.

There has been work developing semantics and theories of truth.
And some generalisations of these for modal predicates.
We can generalise these.

Options for semantics

• Kripke-style semantics, (Kripke, 1975).
(Halbach and Welch, 2009; Stern, 2014b).

• Based on Strong-Kleene logic, (Campbell-Moore, 2015)

• Based on supervaluational logic.

• Revision theory, (Gupta and Belnap, 1993).
(Leitgeb, 2012; Campbell-Moore, ms; Horsten, ms)
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The Setup

Language with predicates P> and T.

In fact PA
> for each agent A.

Sentences like

P>rpϕq the probability of ϕ is > r
Tpϕq ϕ is true

Or actually P>(pϕq, prq)

Other probability clauses are defined.
• P>rpϕq := ∃s > r(P>spϕq)

Actually: P>(t′, t) := ∃x � t(P>(t′, x))

• P6rpϕq := P>1−rp¬ϕq
• P<rpϕq := P>1−rp¬ϕq
• P=rpϕq := P>rpϕq ∧ P6rpϕq
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The semantics

The Semantics

Generalise Kripke (1975).

• Formalising the process of evaluating a sentence ϕ.

• To evaluate Tpϕq one first needs to evaluate ϕ.

• E.g.:

First evaluate 0 = 0 positively.
Then evaluate Tp0 = 0q positively.
And Tp0 = 0q ∨ Liar positively.
Then TpTp0 = 0qq positively.
And keep going. . .

• Until the evaluation process doesn’t lead to anything new.

Called a fixed point. These are the good evaluations.

To evaluate P>rpϕq we first evaluate ϕ in different possible states
of affairs.

Use a Probabilistic Modal Structure
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The semantics

How to evaluate probability

Start with some evaluation.
How should we evaluate P>rpϕq at w0 in the next stage?

w0

w1
ϕ evaluated
positively

w2
ϕ evaluated
negatively

w3
ϕ evaluated
neither way

0.3

0.3

0.4

If ϕ were Probability of ϕ
evaluated at w3: would be:

positively 0.7
negatively 0.3

At next stage we can evaluate:

• P>0.3pϕq positively,

• P>0.8pϕq negatively,

• P>0.5pϕq neither way.
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The semantics

Understanding the evaluations

These evaluations give ranges for the probability of ϕ

] (
0 1 r

pw (ϕ) :=
∑

ϕ evaluated
positively

dw ,v pw (ϕ) := 1−
∑

ϕ evaluated
negatively

dw ,v

P>rpϕq evaluated positively
at next stage

P>rpϕq evaluated negatively
at next stage

Also at the fixed point evaluations.
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An axiomatic theory

Axiomatisation

We give axioms that allow us to reason about these models
syntactically.

Using classical logic.
Consider an induced model.
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An axiomatic theory

The classical induced model

For f a fixed point evaluation define induced model IMM[w , f ] |=:

] (
0 1 r

pw (ϕ) :=
∑

ϕ evaluated
positively
by f(v)

dw ,v pw (ϕ) := 1−
∑

ϕ evaluated
negatively
by f(v)

dw ,v

P>rpϕq

¬P<rpϕq

¬P>rpϕq

P<rpϕq

¬P>rpϕq

¬P<rpϕq
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An axiomatic theory

ProbKFC
Informally written

ppϕq := sup{r | P>rpϕq}

• Some basic facts to get things working. E.g.:
• ∀a∃x(P>ax → Rat(a))
• P>rpϕq↔ ∀s < rP>spϕq

• KFC extended to include probability. E.g.:
• Tpϕ ∨ ψq↔ (Tpϕq ∨ Tpψq)
• Tp¬(ϕ ∨ ψ)q↔ (Tp¬ϕq ∧ Tp¬ψq)
• TpP>rpϕqq↔ P>rpϕq
• Tp¬P>rpϕqq↔ P<rpϕq
• ¬(Tpϕq ∧ Tp¬ϕq)

• Axioms which say that P acts like a probability over the logic inside T:

• pp0 = 0q = 1

• pp0 = 1q = 0

• ppϕq + ppψq = ppϕ ∧ ψq + ppϕ ∨ ψq

• Tpϕq→ Tpψq
ppϕq 6 ppψq
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An axiomatic theory

These axioms are complete(ish)

This is complete with the ω-rule
ϕ(0) ϕ(1) . . .

∀xϕ(x)

Theorem

Γ `ωProbKFC ϕ if and only if for each probabilistic modal structure
M, consistent fixed point evaluation f , and w ∈W,

IMM[w , f ] |= Γ =⇒ IMM[w , f ] |= ϕ

Proof.
Completeness via a canonical model construction

• W :=

{
w ⊆ SentP,T

∣∣∣∣ w is maximally finitely `ωProbKFC-consistent
and closed under ω-rule

}
• M(w) |= ϕ ⇐⇒ ϕ ∈ w

• ϕ evaluated positively by f (w) iff Tpϕq ∈ w

• Find dw,v with
∑

Tpϕq∈v dw,v = sup{r | P>rpϕq ∈ w}
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Avoiding inconsistencies

Reformulating introspection

Express introspection by

TpP<1/2pϕqq→ P=1pP<1/2pϕqq

instead of
P<1/2pϕq→ P=1pP<1/2pϕqq.

This is consistent and is satisfied in exactly the IMM[w , f ] where
the operator

P<1/2ϕ→ P=1P<1/2ϕ

is satisfied.

General strategy (Stern, 2014a)
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Conclusions

• Want expressively rich languages, with probabilistic liars.

• Probabilistic liars can lead to challenges. E.g.:
• Undesirable conflicts with other principles.
• Challenges in determining rational requirements of agents.
• Challenges in giving semantics.

• I developed a semantics by applying Kripke’s theory of truth
to probabilistic modal structures.
• “Problematic” sentences are generally assigned ranges for

probability.
• Can now understand these languages better

• E.g. see how to express introspection.

• We can also give a (sort of) complete axiomatisation allowing
us to reason about these languages axiomatically.

Thanks!
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