BELIEVING EPISTEMIC CONTRADICTIONS

Bob beddor $\mathring{\sigma}$ simon goldstein

 $9 \cdot 18 \cdot 15$

1 The Puzzle

(1) ?? Ari believes the house is empty and might not be.

Uncertain Belief It's possible to coherently believe ϕ without being certain that ϕ .

Uncertainty-Possibility Link If an agent A is coherent, then if A isn't certain that ϕ , A believes $\Diamond \neg \phi$.

No Contradictions It's incoherent to believe $(\phi \land \Diamond \neg \phi)$.

2 Our Proposal

Definition 1 (Contexts). s is a set of possible worlds. Pr_A^w is A's credence function at w. s_A^w is the set of worlds compatible with A's certainties at w.

Definition 2 (Background: Update Semantics).

1.
$$s[\alpha] = s \cap \{w : w(\alpha) = 1\}$$

2.
$$s[\phi \wedge \psi] = s[\phi][\psi]$$

3.
$$s[\neg \phi] = s - s[\phi]$$

4.
$$s[\lozenge \phi] = \{w \in s | s[\phi] \neq \emptyset\}.$$
 veltman (1996)

5.
$$s[C_A \phi] = \{ w \in s | s_A^w \models \phi \}.$$
 $\approx \text{heim (1992)}$

Definition 3 (Locke Updated). $s[B_A\phi] = \{w \in s | Pr_A^w(s_A^w[\phi]) > t\}.$

Definition 4 (Support). s supports ϕ ($s \models \phi$) iff $s[\phi] = s$.

Definition 5 (Validity). ϕ is valid ($\models \phi$) just in case for every s, $s \models \phi$.

Fact 1 (Descriptive Beliefs Are Lockean). For any descriptive (non-modal) sentence ϕ : $s[B_A\phi] = \{w \in s | Pr_A^w(\llbracket \phi \rrbracket) > t\}$.

Proof. By **Locke Updated**, $B_A\phi$ holds at a world w iff A's credence in $s_A^w[\phi]$ exceeds t. To find $s_A^w[\phi]$, we take the set of worlds in A's doxastic state at w (s_A^w) and update this set with ϕ . By **Update Semantics**, when ϕ is descriptive, this is simply the result of intersecting s_A^w with the ϕ worlds ($s_A^w \cap \llbracket \phi \rrbracket$). Since every agent assigns credence 1 to the set of worlds in her doxastic state, her credence in $\llbracket \phi \rrbracket$ will equal her credence in $s_A^w[\phi]$.

• Validates Uncertain Belief

Fact 2 (*Might* Beliefs Are Transparent). For any descriptive sentence ϕ : $s[B_A\Diamond\phi]=\{w\in s|\ s_A^w[\phi]\neq\emptyset\}$.

Proof. By **Locke Updated**, A believes $\Diamond \phi$ at w just in case she gives sufficiently high credence to $s_A^w[\Diamond \phi]$. By **Update Semantics**, $s_A^w[\Diamond \phi]$ is either s_A^w or \emptyset , depending on whether there is a ϕ world in s_A^w . If there is, then

 $s_{A}^{w}[\Diamond \phi] = s_{A}^{w}$, to which A assigns credence 1. Otherwise, $s_{A}^{w}[\Diamond \phi] = \emptyset$, to which A assigns credence 0. And so A believes $\Diamond \phi$ just in case her doxastic state includes a ϕ world.

· Validates Uncertainty-Possibility Link

Fact 3 (No Contradictions). $\models \neg B_A(\phi \land \Diamond \neg \phi)$.

Proof. By **Locke Updated**, A believes $(\phi \land \Diamond \neg \phi)$ at w iff A assigns a sufficiently high credence to $s_A^w[\phi \land \Diamond \neg \phi]$. By **Update Semantics**, $s_A^w[\phi \land \Diamond \neg \phi] = s_A^w[\phi][\Diamond \neg \phi]$. Now $s_A^w[\phi][\Diamond \neg \phi] = \emptyset$ unless $s_A^w[\phi]$ contains at least one $\neg \phi$ world. But $s_A^w[\phi]$ contains only ϕ worlds. So $s_A^w[\phi \land \Diamond \neg \phi] = \emptyset$. Consequently, $Pr_A^w(s_A^w[\phi \land \Diamond \neg \phi]) = 0$.

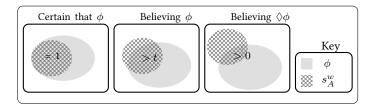


Figure 1: Locke Updated

3 Closure

Multi-Premise Closure If (i) A is rational in believing premises $\phi_1...\phi_n$, (ii) $\phi_1...\phi_n \models \psi$, (iii) A competently infers ψ from these premises, then A's resulting belief in ψ is rational.

- ϕ_1 = the house is empty; ϕ_2 = the house might not be empty.
- Ari rationally believes ϕ_1 , and she rationally believes ϕ_2 .
- But she can't rationally believe $(\phi_1 \wedge \phi_2)$.

Bayesian Closure If (i) A is rational, and (ii) $\phi_1...\phi_n \models \psi$, then A's uncertainty in ψ isn't greater than her uncertainty in ϕ_1 + her uncertainty in ϕ_2 , ..., + her uncertainty in ϕ_n .

Restricted MPC If (i) A is rational in believing descriptive premises $\phi_1...\phi_n$, (ii) $\phi_1...\phi_n \models \psi$, (iii) A competently infers a descriptive conclusion ψ from these premises, then A's resulting belief in ψ is rational.

Definition 6 (Locke Stabilized). $s[B_A\phi]=\{w\in s|\ \forall\psi:\{\phi,\psi\}\not\models\bot\&\ Pr^w_A(\llbracket\psi\rrbracket)>0,\ Pr^w_A(s^w_A[\phi]\mid\llbracket\psi\rrbracket)>t\}.$

· Validates Restricted MPC, but not MPC.

 $^{^1 \}text{Supposing A}$ is coherent: $s^w_A \neq \emptyset.$