Chapter 5

Further Rational Constraints

The previous three chapters have discussed the five core normative Bayesian
rules: Kolmogorov’s probability axioms, the Ratio Formula, and Condition-
alization. Bayesians offer these rules as necessary conditions for an agent’s
credences to be rational. We have not discussed whether these five rules are
jointly sufficient for rational credence.

Agents can satisfy the core rules and still have wildly divergent attitudes.
If you and I draw 1,000 balls from an urn and every one of them is black, I
might be highly confident that the next ball is black. But there is a credence
distribution satisfying all the rational constraints we have mentioned so
far that would allow you to be 99% confident the next ball will be white.
Similarly, if I tell you I have rolled a fair die but don’t tell you how the roll
came out, there is a probabilistic distribution that will allow you to assign
credence 0.8 that it came up 3.

If we think these credence assignments are irrational, we need to identify
additional rational requirements beyond the Bayesian core that rule them
out. We have already seen one potential requirement that goes beyond the
core: the Regularity Principle (Section 4.2) prohibits assigning credence 0
to logically contingent propositions. What other requirements on rational
credence might there be? And could they be strong enough to limit us
to exactly one rationally-permissible credence assignment for each body of
total evidence?

The answer to this last question is sometimes taken to separate Sub-
jective from Objective Bayesians. Unfortunately, “Objective/Subjective
Bayesian” terminology is used ambiguously, so this chapter begins by distin-
guishing two different ways in which that distinction is used. In the course
of doing so we’ll cover various interpretations of probability, including fre-

113



114 CHAPTER 5. FURTHER RATIONAL CONSTRAINTS

quency and propensity views.

Then we will consider a number of additional rational credence con-
straints proposed in the Bayesian literature. We will begin with synchronic
constraints: the Principal Principle (relating credences to chances); the Re-
flection Principle (concerning one’s current credences about one’s future
credences); principles for deferring to experts; indifference principles (for
distributing credences in the absence of evidence); and principles for dis-
tributing credences over infinitely many possibilities. Finally, we will turn
to Jeffrey Conditionalization, an alternative diachronic updating principle
to standard Conditionalization.

5.1 Subjective and Objective Bayesianism

When a weather forecaster comes on television and says, “The probability
of snow tomorrow is 30%,” what does that mean? What exactly has the
weather forecaster communicated to the audience? Such questions have
been asked throughout the history of mathematical probability theory; in
the twentieth century, rival answers became known as intepretations of
probability. There is an excellent literature devoted to this topic and its
history (see the Further Readings of this chapter for recommendations), so I
don’t intend to let it take over this book. But for our purposes it’s important
to touch on some of the main interpretations, and at least mention some of
their advantages and disadvantages.

5.1.1 Frequencies and Propensities

If an event has a 30% probability of producing a certain outcome, we expect
that were the event repeated it would produce that type of outcome about
30% of the time. The frequency theory of probability offers this fact
as an analysis of “probability”. On this interpretation, when the weather
forecaster says the probability of snow tomorrow is 30%, she means that days
like tomorrow produce snow 30% of the time. According to the frequency
theory, the probability is « that event A will have outcome B just in case
proportion z of events like A have outcomes like B.! The frequency theory
originated in work by Robert Leslie Ellis (1849) and John Venn (1866),
then was famously developed by the logical positivist Richard von Mises
(1928/1957).

The frequency theory has a number of problems; I will mention only a
few.2 Suppose my sixteen-year-old daughter asks for the keys to my car; I
wonder what the probability is that she will get into an accident should I
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give her the keys. According to the frequency theory, the probability that
the event of my giving her the keys will have the outcome of an accident
is determined by how frequently this type of event leads to accidents. But
what type of event is it? Is the frequency in question how often people
who go driving get into accidents? How often sixteen-year-olds get into
accidents? How often sixteen-year-olds with the courage to ask their fathers
for the keys get into accidents? How often my daughter gets into accidents?
Presumably these frequencies will differ—which one is the probability that
if I give my daughter the keys on this occasion she will get into an accident?

Any event can be subsumed under many types, and the frequency the-
ory leaves it unclear which event-types determine probability values. Event
types are sometimes known as reference classes, so this is the reference
class problem. In response, one might suggest that outcomes have frequencies—
and therefore probabilities—only relative to the specification of a particular
reference class (either implicitly or explicitly). But it seems we can mean-
ingfully inquire about the probabilities of particular event outcomes (or of
propositions simpliciter) without specifying a reference class. I need to de-
cide whether to give the keys to my daughter; I want to know how probable
it is that she will crash. To which reference class should I relativize?

Frequency information about specific event-types seems more relevant
to determining probabilities than information about general types. (The
probability that my daughter will get into an accident on this occasion seems
much closer to her frequency of accidents than to the accident frequency of
drivers in general.) Perhaps probabilities are frequencies in the maximally
specific reference class? But the maximally specific reference class containing
a particular event contains only that individual event. The frequency with
which my daughter gets into an accident when I give her my keys on this
occaston is either 0 or 1—but we often think probabilities for such events
have nonextreme values.

This raises another problem for frequency theories. Suppose I have a
fair coin and am considering the probability that if I flip it the outcome will
be heads. We'll just grant that the correct reference class for this event is
flips of fair coins. According to the frequency theory, the probability that
this fair coin flip will come up heads is the fraction of all fair coin flips that
ever occur which come up heads. While I'd be willing to bet that number is
close to 1/2, I'd be willing to bet even more that the fraction is not ezactly
1/2.3 So why do we say the probability that a fair coin comes up heads is
1/27?

One might respond that the probability of heads on a fair coin flip is
not the frequency with which fair coin flips actually come up heads over the
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finite history of our universe; instead, it’s the frequency in the limit—were
such coins to continue being flipped forever. But now consider events that
couldn’t possibly be repeated so many times, or even events that couldn’t be
repeated once. Before the Large Hadron Collider was switched on, physicists
were asked for the probability that doing so would destroy the Earth. Were
that to have happened, switching on the Large Hadron Collider would not
have been a repeatable event. Scientists also sometimes discuss the prob-
ability that our universe began with a Big Bang; arguably, that’s not an
event that will happen over and over or even could happen over and over.
The problem of assigning meaningful nonextreme probabilities to individual,
perhaps non-repeatable events is called the problem of the single case.

The frequency theory can address such problems, but at a significant
cost. We first move from frequencies of outcomes in finite, actual repeti-
tions of an event to frequencies that would be approached as the number
of repetitions tended towards the limit. This gives us hypothetical fre-
quency theory. Yet this move undermines one of the original appeals of
the frequency theory: its empiricism. The proportion of event repetitions
that produce a particular outcome in the actual world is the sort of thing
that could be observed (at least in principle)—providing a sound empirical
base for otherwise-mysterious probability talk. Empirically grounding hy-
pothetical frequencies is a much more difficult task. Matters become worse
if we address non-repeatable events by considering not multiple event occur-
rences within one world, but instead single event occurrences across multiple
possible worlds. It’s awfully difficult to tally up the outcomes of such event
sets empirically.®

An alternate interpretation of probability admits that probabilities are
related to frequencies, but draws our attention to the features that cause
particular outcomes to appear with the frequencies that they do. When we
have a fair coin, what is it about the coin that makes it fair? Something
about its physical attributes, the symmetries with which it interacts with
surrounding air as it flips, etc. These traits lend the coin a certain tendency
to come up heads, and an equal tendency to come up tails. This quantifiable
disposition—or propensity—gives rise to facts about frequencies in hypo-
thetical long-run trials. But the propensity is also at work in each individual
flip of the coin, whether that flip is ever repeated or could ever be repeated.
Even a non-repeatable event can have a nonextreme propensity to generate
a particular outcome.

While an early propensity theory appeared in the work of Charles Sanders
Peirce (1910/1932), its most famous champion was Karl Popper (1957). Pop-
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per was especially driven to this view by developments in quantum mechan-
ics. In quantum theory the Born rule calculates probabilities of experimental
outcomes from a particular quantity (the amplitude of the wave-function)
that has independent significance in the theory’s dynamics. Moreover, this
quantity can be determined for a particular experimental setup even if that
setup is never to be repeated (or couldn’t be repeated) again. This gives
propensities a respectable place within an empirically-established scientific
theory. Propensities (sometimes called objective chances) also seem to
play an important role in such theories as thermodynamics and population
genetics.

Yet even if there are propensities in the world, that doesn’t mean all
probabilities are propensities. Suppose we're discussing the likelihood that
a particular outcome occurs given that a quantum experiment is set up in
a particular fashion. This is a conditional probability, and it has a natural
interpretation in terms of physical propensities. But where there is a like-
lihood, probability mathematics suggests there will also be a posterior—if
there’s a probability of outcome given setup, there should also be a probabil-
ity of setup given outcome. Yet the latter hardly makes sense as a physical
propensity—does an experimental outcome have a quantifiable tendency to
set up the experiment that produces it in a particular way?°

Further, propensities are generated by arrangements of matter and en-
ergy as governed by the physical laws of our world. Since physical laws give
rise to the propensities, there can be no propensity for the physical laws to
be one way or another. (What set of laws beyond the physical might deter-
mine those propensities?) Yet it seems physicists can meaningfully discuss
the probability that the physical laws of the universe are one way rather
than another. While the propensity interpretation may make sense of some
of our probability talk, it nevertheless seems to leave a remainder.

5.1.2 Two Distinctions

So what are physicists talking about when they discuss the probability that
the physical laws of the universe are one way rather than another? Perhaps
they are expressing their degrees of confidence in alternative physical hy-
potheses. Perhaps there are no probabilistic facts out in the world, about
which our opinions change as we gain evidence. Instead, it may be that facts
in the world are just facts, true or false, probability-free, and our probability
talk records our changing confidences in those facts in the face of changing
evidence.

Bayesian theories are often characterized as “Subjective” or “Objective”,
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but this distinction is used in two ways. One of them is about the inter-
pretation of probability talk. On this distinction—which I'll call the se-
mantic distinction—Subjective Bayesians adopt the position I proposed
in the previous paragraph. For them, probability talk expresses or reports
the degrees of confidence of the individuals doing the talking, or perhaps of
communities to which they belong. Objective Bayesians, on the other hand,
interpret probability assertions as having truth-conditions independent of
the attitudes of particular agents.% In the twentieth century, talk of “Ob-
jective” and “Subjective” Bayesianism was usually used to draw a semantic
distinction.”

More recently “Subjective Bayesian” and “Objective Bayesian” have
been used to draw a different distinction, which I will call the norma-
tive distinction. However we interpret the meaning of probability talk,
we can grant that agents assign different degrees of confidence to different
propositions (or, more weakly, that it is at least useful to model agents as
if they do). Once we grant that credences exist and are subject to rational
constraints, we may inquire about the stringency of those constraints.

On one end of the spectrum, Objective Bayesians (in the normative
sense) endorse what Richard Feldman (2007) and Roger White (2005) have
called the

Uniqueness Thesis: Given any proposition and body of total evidence,
there is exactly one attitude it is rationally permissible for agents
with that body of total evidence to adopt towards that proposi-
tion.

Assuming the attitudes in question are degrees of belief, the Uniqueness
Thesis says that in any situation there’s exactly one credence an agent is
rationally permitted to take towards a given proposition, and the value
of that credence is determined by her evidence. The Uniqueness Thesis
therefore entails evidentialism, according to which the attitudes rationally
permissible for an agent supervene on her evidence.

Suppose we have two agents with identical total evidence who adopt
different credences in some propositions. Because they endorse the Unique-
ness Thesis, Objective Bayesians (in the normative sense) hold that at least
one of these agents is responding to her evidence irrationally. Notice that
whatever is causing the difference in these agents’ attitudes, it cannot be
the contents of their evidence (because we stipulated that their total evi-
dence is identical). In Section 4.3 we identified the extra-evidential factors
that determine an agent’s attitudes in light of her evidence as her “ultimate
evidential standards”. These evidential standards might reflect pragmatic
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influences, predilections for certain kinds of hypotheses, a tendency towards
mistrust or skepticism, etc.

In a credal context, the Hypothetical Priors Theorem tells us that when-
ever an agent’s credence distributions over time satisfy the probability ax-
ioms, Ratio Formula, and Conditionalization, her evidential standards can
be represented by a hypothetical prior distribution. This regular, probabilis-
tic distribution stays constant as the agent gains evidence over time. Yet
we can always recover the agent’s credence distribution at a given time by
conditionalizing her hypothetical prior on her total evidence at that time.

The core Bayesian rules (probability axioms, Ratio Formula, Condition-
alization) leave a wide variety of hypothetical priors available. Assuming
they satisfy the core rules, our two agents who assign different credences in
response to the same total evidence must have different hypothetical priors.
According to the Objective Bayesian, any time such a situation arises at
least one of the agents must be violating rational requirements. Thus the
Objective Bayesian (in the normative sense) thinks there is exactly one set
of rationally permissible hypothetical priors—one set of correct evidential
standards that embodies all rational agents’ common responses to evidence.
If we think of hypothetical priors as the input that, given a particular ev-
idential situation, produces an agent’s credence distribution as the output,
then the only way for Objective Bayesians to secure unique outputs in every
situation is to demand a universal unique input.

How might the unique correct hypothetical prior be generated, and how
might it be justified? Our ongoing evidential standards for responding to
particular pieces of evidence are often informed by other pieces of evidence
we have received in the past. I take a fire alarm to support a particular
hypothesis about what’s going on in my building because I have received past
evidence about the import of such alarms. But if we go back far enough this
process must stop somewhere; our ultimate evidential standards, represented
by our hypothetical priors, encode responses to our total evidence, and so
cannot be responses to elements of that evidence. If we are to select and
justify a unique set of such ultimate evidential standards, we must do so a
Priori.

Keynes (1921) and Carnap (1950) thought that just as there are objective
facts about which propositions are logically entailed by a given body of
evidence, there are objective logical facts about the degree to which a body
of evidence probabilifies a particular proposition. Carnap went on to offer
a mathematical algorithm for calculating the uniquely logical hypothetical
priors from which these facts could be determined; we will discuss that
algorithm in Chapter 6. (The logical interpretation of probability holds
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that an agent’s probability talk concerns logical probabilities relative to her
current total evidence.®) Many recent theorists, while backing away from
Keynes’ and Carnap’s position that these values are logical, nevertheless
embrace the idea of evidential probabilities reflecting the degree to which
a proposition is probabilified by a body of evidence. If you think that
rationality requires an agent to assign credences equal to the true evidential
probabilities on her current total evidence, you have an Objective Bayesian
view in the normative sense.’

At the other end of the spectrum from Objective Bayesians (in the nor-
mative sense) are theorists who hold that the probability axioms and Ratio
Formula are the only rational constraints on hypothetical priors.!? The lit-
erature often defines “Subjective Bayesians” as people who hold this view.
But that terminology leaves no way to describe theorists in the middle of
the spectrum—the vast majority of Bayesian epistemologists who believe in
rational constraints on hypothetical priors that go beyond the probability
axioms but are insufficient to narrow us down to a single viable standard. I
will use the term “Subjective Bayesian” (in the normative sense) to refer to
anyone who thinks more than one hypothetical prior is rationally permissi-
ble. I will call people who think the Ratio Formula and probability axioms
are the only rational constraints on hypothetical priors “extreme Subjective
Bayesians”.

Subjective Bayesians allow for what White calls permissive cases: ex-
amples in which two agents reach different conclusions on the basis of the
same evidence without either party’s making a rational mistake. This is be-
cause each agent interprets the evidence according to different (yet equally
rational) evidential standards, which allows them to draw different conclu-
sions.

I have distinguished the semantic and normative Objective/Subjective
Bayesian distinctions because they can cross-cut one another. Historically,
Ramsey (1931) and de Finetti (1931/1989) reacted to Keynes’ Objective
Bayesianism with groundbreaking theories that were Subjective in both the
semantic and normative senses. But one could be a Subjective Bayesian in
the semantic sense—taking agents’ probability talk to express their own cur-
rent credences—while maintaining that strictly speaking only one credence
distribution is rationally permitted in each situation (thereby adhering to
Objective Bayesianism in the normative sense). Going in the other direc-
tion, one could admit the existence of degrees of belief while holding that
they’re not what probability talk is about. This would give an Objective
Bayesian semantic view that combined with either Subjective or Objective
Bayesianism in the normative sense. Finally, probability semantics need not
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be monolithic; many Bayesians now think that some probability assertions
express credences, others report objective chances, while still others indicate
what would be reasonable to think given one’s evidence.

Regardless of your position on the semantics, as long as you aren’t an
extreme Subjective Bayesian in the normative sense you will concede that
there are rational constraints on agents’ hypothetical priors beyond the prob-
ability axioms and Ratio Formula. What might those constraints be? We
will now investigate some proposals.

5.2 Deference Principles

5.2.1 The Principal Principle

Suppose it is now 1pm on a Monday. I tell you that over the weekend I
found a coin from a foreign country that is somewhat irregular in shape.
Despite being foreign, one side of the coin is clearly the “Heads” side and
the other is “Tails”. I also tell you that I flipped the foreign coin today at
noon.

Let H be the proposition that the noon coin flip landed heads. Consider
each of the propositions below one at a time, and decide what your credence
in H would be if that proposition was all you knew about the coin besides
the information in the previous paragraph:

FEy: After discovering the coin I spent a good part of my weekend
flipping it, and out of my 100 weekend flips 64 came up heads.

FE5: The coin was produced in a factory that advertises its coins as
fair, but also has a side business generating black-market coins
biased towards tails.

FE3: The coin is fair.

FE4: Your friend Amir was with me at noon when I flipped the coin,
and he told you it came up heads.

Hopefully it’s fairly clear how to respond to each of these pieces of ev-
idence, taken singly. For instance, in light of the frequency information in
FE, it seems rational to have a credence in H somewhere around 0.64. We
might debate whether precisely 0.64 is required, but certainly a credence
in H of 0.01 (assuming E; is your only evidence about the coin) seems
unreasonable.

This point generalizes to a rational principle that whenever one’s evi-
dence includes the frequency with which events of type A have produced
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outcomes of type B, one should set one’s credence that the next A-event
will produce a B-outcome equal to (or at least in the vicinity of) that fre-
quency.'! While some version of this principle ought to be right, working
out the specifics creates problems like those faced by the frequency inter-
pretation of probability. For instance, we have a reference class problem:
Suppose my evidence includes accident frequency data for drivers in general,
sixteen-year-old drivers in general, and my sixteen-year-old daughter in par-
ticular. Which value should I use to set my credence that my daughter will
get in a car accident tonight? The more specific data seems more relevant,
but the more general data contains a larger sample size.

There are well-known statistical tools for dealing with these problems,
some of which we will discuss in Chapter XXX. But for now let’s focus on
a different question about frequency data: Why do we use known flip out-
comes to predict the outcome of unobserved flips? Perhaps because known
outcomes indicate something about the physical properties of the coin it-
self; they help us figure out its propensity (or objective chance) of coming
up heads. In Section 5.1 I raised some problems for thinking that objec-
tive chances provide a universal semantics for probability-talk. But one
can believe that chances exist and are often important to our reasoning
about probabilities without thinking that probability talk always references
chance. It’s very plausible that known flip data influences our unknown
flip predictions because it makes us think our coin has a particular chance
profile. In this case, frequency data influences predictions by way of our
opinions about chances.

This relationship between frequency and chance is revealed when we
combine pieces of evidence listed above. We’ve already said that if your
only evidence about the coin is F1—it came up heads on 64 of 100 known
tosses—then your credence that the noon toss (of uncertain outcome) came
up heads should be around 0.64. On the other hand, if your only evidence
is E3, that the coin is fair, then I hope it’s plausible that your credence in
H should be 0.5. But what if you're already certain of Fs, and then learn
E47 In that case your credence in heads should still be 0.5.

Keep in mind we’re imagining you're certain that the coin is fair before
you learn the frequency data; we’re not concerning ourselves with the possi-
bility that, say, learning about the frequencies makes you suspicious of the
source from which you learned the coin is fair. If it’s a fixed, unquestionable
truth for you that the coin is fair, then learning it came up 64 heads on 100
flips will not change your credence in heads. If all you had was the frequency
information, that would support a different hypothesis about the chances.
But it’s not as if 64 heads on 100 flips is inconsistent with the coin’s being
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fair—even a fair coin usually won’t come up heads on exactly half the flips
in a given sample. So once you're already certain of heads, the frequency
information becomes redundant, irrelevant to your opinions about unknown
flips. Frequencies help you learn about chances, so if you are already certain
of the chances there’s nothing more for frequency information to do.

David Lewis (1980) called information that changes your credences about
an event by way of changing your opinions about the chances admissible
information. His main insight about admissible information was that when
the chance values for an event have already been established, admissible
information becomes irrelevant to a rational agent’s opinions about the out-
come.

Here’s another example: Suppose your only evidence about the noon flip
outcome is Fy, that the coin was produced in a factory that advertises its
coins as fair but has a side business in tails-biased coins. Given only this
information your credence in H should be somewhere below 0.5. (Exactly
how far below depends on how extensive you estimate the side business to
be.) On the other hand, suppose your learn F after already learning Fjs,
that the coin is fair. Fs then becomes unimportant information, at least with
respect to predicting flips of the coin. Fs is relevant in isolation because it
informs you about the propensities of the coin. But once you're certain
that the coin is fair, further possessing information FEs only teaches you
that you happened to get lucky not to have a black-market coin; it doesn’t
do anything to push your credence in H away from 0.5. FEs is admissible
information.

Contrast that with Fy4, your friend Amir’s report that he observed the
flip landing heads. Assuming you trust Amir, F, should make you highly
confident in H. And this should be true even if you already possess infor-
mation Fs3 that the coin is fair. Notice that E3 and Ej4 are consistent; the
coin’s being fair is consistent with its having landed heads on this particular
flip, and with Amir’s reporting that outcome. But E4 trumps the chance
information; it moves your credence in heads away from where it would be
(0.5) if you knew only Ej3. Information about this particular flip’s outcome
does not change your credences about the flip by way of influencing your
opinions about the chances. You still think the coin is fair, and was fair at
the time it was flipped. You just know now that the fair coin happened to
come up heads on this occasion. Information about this flip’s outcome is
inadmissible with respect to H.

Lewis expressed his insight about the irrelevance of admissible informa-
tion in a principle relating chance and rational credence, which he called
the
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Principal Principle: Let cry be any reasonable initial credence function.
Let t; be any time. Let z be any real number in the unit interval.
Let Ch;(A) = = be the proposition that the chance, at time ¢;, of
A’s holding equals . Let E be any proposition compatible with
Ch;(A) = z that is admissible at time ¢;. Then

crg(A|Chi(A) =2 & E) ==z

(I have copied this principle verbatim from (1980, p. 266), though I have
altered Lewis’ notation to match our own.) There’s a lot to unpack in the
Principal Principle, so we’ll take it one step at a time. By “reasonable ini-
tial credence function” Lewis means what we have been calling a “rational
hypothetical prior” (hence my use of cry in the equations). So the Prin-
cipal Principle is proposed as a rational constraint on hypothetical priors,
one that goes beyond the probability axioms and Ratio Formula. In partic-
ular, the Principal Principle is a principle of direct inference (Section 3.1.3),
constraining credences in an experimental outcome relative to a chance hy-
pothesis.

Why frame the Principal Principle around hypothetical priors, instead
of focusing on the credences of rational agents at particular times? One
advantage is that this makes the total evidence in question explicit, and
therefore easy to reference in the principle. Recall from Section 4.3 that
a hypothetical prior is a probabilistic, regular distribution containing no
contingent evidence. A rational agent is associated with a particular hypo-
thetical prior, in the sense that if you conditionalize that hypothetical prior
on the agent’s total evidence at any given time, you get the agent’s credence
distribution at that time.

In the Principal Principle, we imagine that a real-life agent is considering
some proposition A about the outcome of a chance event. She has some
information about the chance of A, Ch;(A) = x, and then some further
evidence E. So her total evidence is Ch;(A) = 2 & E, and by the definition
of a hypothetical prior her credence in A equals crpy(A|Ch;i(A) = 2 & E).
Lewis claims that as long as F is both admissible for A, and is compatible
(which we can take to mean “logically consistent”) with Ch;(4) = z, E
should make no difference to the agent’s credence in A. In other words, as
long as F is admissible and compatible, the agent should be just as confident
in A as she would be if all she knew were Ch;(A) = =. That is, her credence
in A should be zx.

Return to our example about the noon coin flip, and the relationship
between chance and frequency information. Suppose that at 1pm your total
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Figure 5.1: Chances screen off frequencies

coin’s objective chances

known flip unknown flip
frequencies outcome (H)

evidence about the flip outcome consists of £y and FE3. Fs3, the chance
information, says that Ch(H) = 0.5. Ej, the frequency information, supplies
your additional total evidence, which will play the role of F in the Principal
Principle. Because this additional evidence is both consistent with Ch(H) =
0.5 and admissible for H, the Principal Principle says your 1pm credence in
H should be 0.5. Which is exactly the result we came to before.

Yet the Principal Principle provides further insight into this result by
connecting it to our earlier (Section 3.2.4) discussion of causation and screen-
ing off. Figure 5.1 illustrates the causal relationship between chances, fre-
quencies, and unknown results in the coin example. The coin’s physical
propensity to come up heads causally influenced the frequency with which
it came up heads in the observed trials. The coin’s physical makeup also
affects the outcome of the unknown flip. Thus frequency information is rele-
vant to the unknown flip, but only by way of the chances. We saw in Section
3.2.4 that when this kind of causal fork structure obtains, the common cause
screens its effects off from each other. Conditional on the chances, frequency
information becomes irrelevant to flip predictions. That is,

cryr (H | Ch(H) = 0.5 & E) = crgy(H | Ch(H) = 0.5) (5.1)

and intuitively the expression on the right should equal 0.5.

A similar analysis applies if your total evidence about the coin flip con-
tains only Ch(H) = 0.5 and E», the evidence about the coin factory. This
time our structure is a causal chain, as depicted in Figure 5.2. The situation
in the coin factory causally affects the chance profile of the coin, which in
turn causally affects the unknown flip outcome. Thus the coin factory infor-
mation affects opinions about H by way of the chances, and if the chances
are already determined then factory information becomes irrelevant. Let-
ting the factory information play the role of E in the Principal Principle,
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Figure 5.2: Chance in a causal chain
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the chances screen off E from H and we have the relation in Equation (5.1).

Finally, information F4, your friend Amir’s report, is not admissible in-
formation about H. FE, affects your opinions about H, but not by way of
affecting your opinions about the chances. The Principal Principle applies
only when E, the information possessed in addition to the chances, is admis-
sible. Since FE}j is inadmissible, the Principal Principle supplies no guidance
about setting your credences in light of it.

There are still a few details in the principle to unpack. For instance,
youll notice that the chance expression Ch;(A) is indexed to a time t;.
That’s because the chance that a particular proposition will obtain can
change as time goes on. For instance, suppose that at 11am our foreign coin
was fair, but at 11:30 I stuck a particularly large, non-aerodynamic wad of
chewing gum to one of its side. In that case, the proposition H that the
coin comes up heads at noon would have a chance of 0.5 at 11am but might
have a different chance after 11:30. The physical details of an experimental
setup determine its chances, so as physical conditions change chances may
change as well.?

Finally, the Principal Principle’s formulation in terms of conditional cre-
dences allows us to apply it even when an agent doesn’t have full informa-
tion about the chances. Suppose your total evidence about the outcome
A of some chance event is F. F influences your credences in A by way of
informing you about A’s chances (so E is admissible), but E does not tell
you what the chances are exactly. Instead, E tells you that the chance of A
(at some time, which I'll suppress for the duration of this example) is either
0.7 or 0.4. FE also supplies you with a favorite among these two chance hy-
potheses: it sets your credence that 0.7 is the true chance at 2/3, and your
credence that 0.4 is the true chance at 1/3.
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How can we analyze this situation using the Principal Principle? Since
your total evidence is E, the definition of a hypothetical prior tells us that
your current credences cr should be related to your hypothetical prior crg
as follows:

cr(A) =crg(A| E) (5.2)

This value is not dictated directly by the Principal Principle. However, the
Principal Principle does set

cri(A|Ch(A) = 0.7& E) = 0.7 (5.3)

because we stipulated that E is admissible. (For simplicity’s sake I'm not
worrying about time-indexing the chances.) Similarly, the Principal Princi-
ple sets

crg(A|Ch(A) =04& E) =04 (5.4)

Since E narrows the possibilities down to two mutually exclusive chance hy-
potheses, those hypotheses (Ch(A) = 0.7 and Ch(A) = 0.4) form a partition
relative to E. Thus we can apply the Principle of Total Evidence (in its
conditional credence form) to obtain

crg(A|E) =crg(A|Ch(A) =0.7& E) - crg(Ch(A) = 0.7| E)+ (5.5)
crg(A|Ch(A) =04 & E) -crg(Ch(A) =04 | E) '

By Equations (5.3) and (5.4), this is
crg(A|E)=0.7-crg(Ch(A) =0.7|E) + 04 -crg(Ch(A) =04|E) (5.6)

As Equation (5.2) suggested, cry(-| E) is just cr(-). So this last equation
becomes

cr(A) =0.7-cr(Ch(A) =0.7) + 0.4 - cr(Ch(A) = 0.4) (5.7)
Finally, we fill in the values stipulated in the problem to conclude
cr(A)=0.7-2/3+04-1/3=0.6 (5.8)

This is a lot of calculation, but the overall lesson comes to this: When your
total evidence is admissible and restricts you to a finite set of chance values
for A, the Principal Principle sets your credence in A equal to a weighted
average of those chance values (where each chance value is weighted by your
credence that it’s the true chance).
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This is an extremely useful conclusion, provided we can tell when our
evidence is admissible. Lewis writes that, “Admissible propositions are the
sort of information whose impact on credence about outcomes comes entirely
by way of credence about the chances of those outcomes.” (1980, p. 272)
He then sketches out some categories of information we should expect to be
admissible, and inadmissible. For example, evidence about events causally
upstream from the chances will be admissible, because those events will form
the first link in a causal chain like Figure 5.2. This includes information
about the physical laws that give rise to chances; such information affects
our credences about experimental outcomes by affecting our views about
their chances. On the other hand, evidence that is caused by the outcome
of the chance event is inadmissible, as we saw in the example of Amir’s re-
port. Generally, then, it’s a good rule of thumb that facts concerning events
temporally before the chance outcome are admissible, and inadmissible in-
formation is always about events after the outcome. (Though Lewis does
remark at one point (1980, p. 274) that if backward causation is possible,
seers of the future or time-travelers might give us inadmissible information
about chance events yet to come.)

We'll end our discussion of the Principal Principle with a couple of
caveats. First, I have been talking about coin flips, die rolls, etc. as if
their outcomes have non-extreme objective chances. If you think that these
outcomes are fully determined by the physical state of the world prior to
such events, you might think these examples aren’t really chancy at all—or
if there are chances associated with their outcomes, the world’s determinism
makes those chances either 1 or 0. There are authors who think non-extreme
chance assignments are compatible with an event’s being fully determinis-
tic. This will be especially plausible if you think a single phenomenon may
admit of causal explanations at multiple levels of description. (Though the
behavior of a gas is fully determined by the positions and velocities of its con-
stituent particles, we might still use a thermodynamical theory that treats
the gas’s behavior as chancy.) In any case, if the compatibility of deter-
minism and non-extreme chance concerns you, you can always replace my
coin-flipping and die-rolling examples with genuinely indeterministic quan-
tum events.

Second, you might think frequency data can affect rational credences
without operating through opinions about chances. Suppose a new patient
walks into a doctor’s office, and the doctor assigns a credence that the patient
has a particular disease equal to that disease’s frequency in the general
population. In order for this to make sense, need the doctor assume the
patient was brought to her through some genuinely chancy physical process?
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(That is, need the frequency affect her credences by way of informing some
opinions about chances?) This will probably depend on how broadly we are
willing to interpret macroscopic events as having objective chances. But
unless chances are literally everywhere, inferences governed by the Principal
Principle form a proper subset of legitimate instances of inductive reasoning.
To move from frequencies in an observed population to predictions about the
unobserved when chances are not present, we may need something like the
frequency-credence principle (perhaps made more plausible by incorporating
statistical tools) with which this section began. Or we may need a theory
of inductive confirmation in general—something we will try to construct in
Chapter 6.

For the time being, the lesson of the Principal Principle is clear: Where
there are objective chances in the world, we should align our credences
with them to the extent we can determine what they are. While there
are exceptions to this rule, they depend on the causal relation between our
information and the chances of which we’re aware.

5.2.2 Expert principles and Reflection

The Principal Principle is sometimes described as a deference principle:
to the extent you can determine what the objective chances are, the principle
directs you to defer to them by making your credences match. In a certain
sense, you treat the chances as authorities on what your credences should
be. Might other sorts of authorities demand such rational deference?

Testimonial evidence plays a large role in how we learn about the world.
Suppose an expert on some subject reveals her credences to you. Instead
of coming on television and talking about the “probability” of snow, the
weather forecaster simply tells you she’s 30% confident that it will snow
tomorrow. It seems intuitive that—absent other evidence about tomorrow’s
weather—you should set your credence in snow to 0.30 as well.

We can generalize this intuition with a principle for deference to experts
modeled on the Principal Principle:

crg(Alerg(4) =2) == (5.9)

Here cry is a rational agent’s hypothetical prior, A is a proposition within
some particular subject matter, and crg(A) = z is the proposition that an
expert on that subject matter assigns credence x to A. Equation (5.9) has
consequences similar to the Principal Principle’s: When a rational agent
is certain that an expert assigns credence x to A, conditionalizing a hy-
pothetical prior satisfying Equation (5.9) on that certainty will leave her
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with unconditional credence cr(A) = z. On the other hand, an agent who
is uncertain of the expert’s opinion will use Equation (5.9) to calculate a
weighted average of all the values she thinks the expert might assign.

This principle tells us how to defer to someone we’ve identified as an
expert. But it doesn’t say anything about how to make that identification!
Ned Hall helpfully distinguishes two kinds of experts we might look for:

Let us call the first kind of expert a database-expert: she earns
her epistemic status simply because she possesses more informa-
tion. Let us call the second kind an analyst-expert: she earns her
epistemic status because she is particularly good at evaluating
the relevance of one proposition to another. (Hall 2004, p. 100)

A database expert possesses strictly more evidence than me. While she may
not reveal the contents of that evidence, I can still take advantage of it by
assigning the credences she assigns on its basis. On the other hand, I defer
to an analyst expert not because of her superior evidence but because she is
particularly skilled at forming opinions from the evidence we share. Clearly
these categories can overlap; relative to me, a weather forecaster is probably
both an analyst expert and a database expert with respect to the weather.

One particular database expert has garnered a great deal of attention
in the deference literature: an agent’s future self. Because Conditionaliza-
tion retains certainties (Section 4.1.1), at any given time a conditionalizing
agent will possess all the evidence possessed by each of her past selves—and
typically quite a bit more. So an agent who is certain she will update by
conditionalizing should treat her future self as a database expert. On the
supposition that her future self will assign credence x to a proposition A, she
should now assign credence = to A as well. This is van Fraassen’s (1984)

Reflection Principle: For any proposition A in £, real number z, and
times ¢; and t; with j > 7, rationality requires

cri(Alcrj(A) =x) ==z

Although the Reflection Principle mentions the agent’s credences at both
t; and t;, note that strictly speaking it is a synchronic principle, relating
various credences the agent assigns at a given time. If we apply the Ratio
Formula to the principle’s equation and then cross-mutiply, we obtain:

cri[A& crj(A) = z] = x - cryferj(A) = z] (5.10)
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The two credences related by this equation are both assigned at t;; they just
happen to be credences in some propositions about ¢;.

Yet despite this synchronic nature, Reflection bears an intimate con-
nection to Conditionalization. If an agent is certain she will update by
conditionalizing between ¢; and ¢;—and meets a few other side conditions—
Reflection follows. For instance, the Reflection Principle can be proven from
the following set of conditions:

1. The agent is certain at ¢; that cr; will result from conditionalizing cr;
on the total evidence she learns between t; and t; (call it £).

2. The agent is certain at ¢; that E (whatever it may be) is true.
3. crj(erj(A) =x) >0
4. At t; the agent can identify a set of propositions S in £ such that:

(a) The elements of S form a partition relative to the agent’s certain-
ties at ;.

(b) At t; the agent is certain that F is one of the propositions in S.

(c) For each element in S, the agent is certain at ¢; what degree of
belief she assigns to A conditional on that element.

References to the proofs described in this section can be found in the
Further Readings. Here I'll simply provide an example that illustrates the
connection between Conditionalization and Reflection. Suppose that I've
rolled a die you're certain is fair, but as of ¢; have told you nothing about
the outcome. However, at t; you're certain that between ¢; and ¢ I'll reveal
to you whether the die came up odd or even. The Reflection Principle
suggests you should assign

cr1 (6| cra(6) = 1/3) = 1/3 (5.11)

Assuming the enumerated conditions hold in this example, we can reason
to Equation (5.11) as follows: In this case the partition S contains the
proposition that the die came up odd and the proposition that it came up
even. You are certain at ¢; that one of these propositions will provide the
E you learn before to. You're also certain that your cry(6) value will result
from conditionalizing your t¢; credences on E. So you’re certain at ¢; that

cro(6) = cri (6| E) (5.12)
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Equation (5.11) involves your ¢; credence in 6 conditional on the suppo-
sition that cre(6) = 1/3. To determine this value, let’s see what conditional
reasoning you could do at ¢; on the supposition that crz(6) = 1/3. We just
said that at ¢; you're certain of Equation (5.12), so you could conclude that
cr1(6| E) = 1/3. Then you could examine your current ¢; credences condi-
tional on both odd and even, and find that cri(6 | E') will equal 1/3 only if
E is the proposition that the die came up even. (Conditional on the die’s
coming up odd, your credence in a 6 would be 0.) Thus you could conclude
that E is the proposition that the die came up even. You're also certain at
t; that E (whatever its content) is true, so concluding that E says the die
came up even would allow you to conclude that the die did indeed come up
even. And on the condition that the die came up even, your t; credence in
a 6is 1/3.

All of the reasoning in the previous paragraph was conditional, start-
ing with the supposition that cre(6) = 1/3. We found that conditional
on this supposition, your rational credence in 6 would be 1/3. And that’s
exactly what the Reflection Principle gave us in Equation (5.11).'3 Informa-
tion about your future credences tells you something about what evidence
you’ll receive between now and then. And information about what evidence
you’ll receive in the future should be incorporated into your credences in the
present.

But how often do we really get information about our future opinions?
Approached the way I've just done, the Reflection Principle seems to have
little usable content. But van Fraassen originally proposed Reflection in a
very different spirit. He saw the principle stemming from basic commitments
we undertake when we form opinions.

van Fraassen drew an analogy to making promises. Suppose I make a
promise at a particular time, but at the same time admit to being unsure
whether I will actually carry it out. van Fraassen writes that “To do so would
mean that I am now less than fully committed (a) to giving due regard to the
felicity conditions for this act, or (b) to standing by the commitments I shall
overtly enter.” (1984, p. 255) To fully stand behind a promise requires full
confidence that you will carry it out. And what goes for current promises
goes for future promises as well: if you know you’ll make a promise later on,
failing to be fully confident now that you’ll enact the future promise is a
betrayal of solidarity with your future promising self.

Now apply this lesson to the act of making judgments: assigning a differ-
ent credence now to a proposition than you will in the future is a failure to
stand by the commitments implicit in that future opinion. As van Fraassen
put it in a later publication, “Integrity requires me to express my com-
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mitment to proceed in what I now classify as a rational manner, to stand
behind the ways in which I shall revise my values and opinions.” (1995,
pp. 25-26) This is his motivation for endorsing the Reflection Principle.!4
For van Fraassen, Reflection brings out a substantive commitment inher-
ent in judgment, which underlies various other rational requirements. For
instance, since van Fraassen’s argument for Reflection does not rely on Con-
ditionalization, van Fraassen at one point (1999) uses Reflection to argue
for Conditionalization!!?

Of course, one might not agree with van Fraassen that credence assign-
ment necessarily involves such strong commitments. And even if Reflection
can be supported as van Fraassen suggests, moving from that principle to
Conditionalization is going to require serious further premises. As we’ve
seen, Reflection itself is a synchronic principle, relating an agent’s attitudes
at one time to other attitudes she assigns at the same time. At best, it will
support the conclusion that an agent with certain attitudes at a given time
is required to predict that she will update by Conditionalization. To actu-
ally establish Conditionalization as a diachronic norm, we would need the
further assumption that rationally requires agents to update in the manner
they antecedently predict.

5.3 The Principle of Indifference

The previous section discussed various deference principles (the Principal
Principle, expert principles, the Reflection Principle) that place additional
rational constraints on credence beyond the probability axioms, Ratio For-
mula, and Conditionalization. Yet each of those deference principles works
with a particular kind of evidence—evidence about the chances, about an
expert’s credences, or about future attitudes. When an agent lacks these
sorts of evidence about a proposition she’s considering, the deference princi-
ples will do little to constrain her credences. If an Objective Bayesian (in the
normative sense) wants to narrow what’s rationally permissible to a single
hypothetical prior, he is going to need a stronger principle than these three.

The Principle of Indifference is often marketed to do the trick. This
principle has forerunners dating back to a proposal of Laplace’s (1814/1995)
that came to be known as the “principle of insufficient reason”. But it was
first called “the Principle of Indifference” by John Maynard Keynes, who
wrote,

The Principle of Indifference asserts that if there is no known
reason for predicating of our subject one rather than another
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of several alternatives, then relatively to such knowledge the as-
sertions of each of these alternatives have an equal probability.
(Keynes 1921, p. 42, emphasis in original)

Applied to degrees of belief, the Principle of Indifference holds that if
an agent has no evidence favoring any particular proposition in a partition
over any other, she should spread her credence equally over the members of
the partition. If I tell you I have painted my house one of the seven colors
of the rainbow but tell you nothing more about my selection, the Principle
of Indifference requires 1/7 credence that my house is now violet.

The Principle of Indifference looks like it could settle all open questions
about rational credence. An agent could assign specific credences to doxas-
tic possibilities when portions of her evidence require it (say, when one of
the deference principles applies); her remaining credence would be spread
equally among the remaining possibilities by the Principle of Indifference.
For example, suppose I tell you that I flipped a fair coin to decide on a
house color—heads meant gray, while tails meant a color of the rainbow.
You could follow the Principal Principle and assign credence 1/2 to my
house’s being gray, while the Principle of Indifference directed you to dis-
tribute the remaining 1/2 credence equally among each of the rainbow colors
(so each would receive credence 1/14). This plan seems to dictate a unique
rational credence for every proposition in every evidential situation, thereby
specifying a unique hypothetical prior distribution.'®

Unfortunately, the Principle of Indifference has a serious flaw, one that
was recognized by Keynes himself.!” Suppose I tell you just that I painted
my house some color—I don’t tell you what selection I chose from—and
you wonder whether it was violet. You might partition the possibilities into
the proposition that I painted the house violet and the proposition that I
didn’t. In that case, lacking further information the Principle of Indiffer-
ence would require you to assign credence 1/2 that the house is violet. But
if you use the seven colors of the rainbow as your partition, you will assign
1/7 credence that my house is now violet. And if you use the colors in a
box of crayons. ... The trouble is that faced with the same evidential situa-
tion and same proposition to be evaluated, the Principle of Indifference will
recommend different credences depending on which partition you consider.

Might one partition be superior to all the others, perhaps on grounds
of the naturalness with which it divides the space of possibilities? (The
selection of colors in a crayon box is pretty arbitrary!) Well, consider this
example: I just drove 80 miles to visit you. I tell you it took between 2 and 4
hours to make the trip, and ask how confident you are that it took less than 3.
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3 hours seems to neatly divide the possibilities in half, so by the Principle of
Indifference you assign credence 1/2. Then I tell you I maintained a constant
speed throughout the drive, and that speed was between 20 and 40 miles
per hour. You consider the proposition that I drove faster than 30mph, and
since that neatly divides the possible speeds the Indifference Principle again
recommends a credence of 1/2. But these two credence assignments conflict.
I drove over 30mph just in case it took me less than two hours and forty
minutes to make the trip. So are you 1/2 confident that it took me less than
3 hours, or that it took me less than 2 hours 40 minutes? If you assign any
positive credence that my travel time fell between those durations, the two
answers are inconsistent. But thinking about my trip in velocity terms is
just as natural as thinking about how long it took.'®

This example is different from the painting example, in that time and
speed require us to consider continuous ranges of possibilities. Infinite pos-
sibility spaces introduce a number of complexities we will discuss in the
next section, but hopefully the intuitive problem here is clear. Joseph
Bertrand (1888/1972) produced a number of infinite-possibility paradoxes
for principles like Indifference. His most famous puzzle (now usually called
Bertrand’s Paradox) asks how probable it is that a chord of a circle will
be longer than the side of an inscribed equilateral triangle. Indifference rea-
soning yields conflicting answers depending on how one specifies the chord
in question—by specifying its endpoints, by specifying its orientation and
length, by specifying its midpoint, etc.

Since Keynes’s discussion, a number of authors have modified his Indif-
ference Principle. Chapter 6 will look in detail at Carnap’s proposal. An-
other well-known suggestion is E.T. Jaynes’ (1957a,b) Maximum Entropy
Principle. Given any set of constraints on allowable credence distributions,
the Maximum Entropy Principle selects the allowable distribution with the
highest entropy. Over a finite partition of propositions Q1,Q2, ..., @y, the
entropy of a distribution is calculated as

— Z cr(Q;) - log er(Q;) (5.13)
i=1

The technical details of Jaynes’ proposal are beyond the level of this book.
The intuitive idea, though, is that by maximizing entropy in a distribution
we minimize information.

To illustrate, suppose you know an urn contains 100 balls, each of which
is either black or white. Initially, you assign an equal credence to each
available hypothesis about how many black balls are in the urn. This “flat”
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Figure 5.3: Possible urn distributions
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distribution over the urn hypotheses is reflected by the dashed line in Figure
5.3. Then I tell you that the balls were created by a process that tends to
produce as many white balls as black. This moves you to the more “peaked”
distribution of Figure 5.3’s solid curve. The peaked distribution reflects the
fact that at the later time you had more information about the contents of
the urn. There are various mathematical ways to measure the informational
content of a distribution, and it turns out that a distribution’s information
content goes up as its entropy goes down.

Maximizing entropy is thus a strategy for selecting the lowest-information
distribution consistent with what we already know. Jaynes’ principle says
that within the bounds imposed by your evidence, you should select the
“flattest” credence distribution available. In a sense, this is a directive not
to make any presumptions beyond what you know. As van Fraassen puts
it, “one should not jump to unwarranted conclusions, or add capricious as-
sumptions, when accommodating one’s belief state to the deliverances of
experience.” (1981, p. 376) If all your evidence about my urn is that it
contains 100 black or white balls, it would be strange for you to peak your
credences around any particular number of black balls. What in your evi-
dence would justify such a maneuver? The flat distribution seems the most
rational option available.'®

The Maximum Entropy approach has a number of its advantages. First,
it extends easily from cases of finitely many possibilities to cases of infinitely
many. (The summation in Equation (5.13) becomes an integral.) Second,
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for cases in which an agent’s evidence simply delineates a space of doxastic
possibilities (without favoring particular possibilities over particular others),
the Principle of Maximum Entropy yields the same results as the Principle
of Indifference. But Maximum Entropy also handles cases involving more
complicated sorts of information. Besides restricting the set of possibilities,
an agent’s evidence might require her credence in one possibility to be twice
that of another, or might require a particular conditional credence between
two propositions. No matter the constraints, Maximum Entropy chooses
the “flattest” (most entropic) distribution consistent with those constraints.
Third, probability distributions selected by the Maximum Entropy Princi-
ple have been highly useful in various scientific applications, ranging from
statistical mechanics to CT scans to natural language processing.

Yet the Maximum Entropy Principle also has flaws. It suffers from a ver-
sion of the Indifference Principle’s partitioning problem, assigning different
credences to the same proposition depending on which partition is selected.
Also, in some evidential situations satisfying the Maximum Entropy Princi-
ple both before and after an update requires agents to assign credences that
violate Conditionalization.

5.4 Credences for Infinite Possibilities

Suppose I tell you a positive integer was just selected by some process,
and tell you nothing more about that process. You need to distribute your
credence across all the possible integers that might have been selected. Let’s
further suppose that you want to do so in such a way that each positive
integer receives the same credence. In the last section we asked whether,
given your scant evidence in this case about the selection process, you're
required to assign each positive integer an equal credence. In this section I
want to set aside the question of whether an equal distribution is required,
and ask whether it’s even possible.

We’re going to have a small, technical problem here with the proposi-
tional language over which you credence distribution is assigned. In Chapter
2 we set up propositional languages with a finite number of atomic proposi-
tions, while a distribution over every positive integer requires infinitely many
atomic propositions. Yet there are standard logical methods for dealing with
languages containing infinitely many atomic propositions, and even for rep-
resenting them using a finite number of symbols. For example, we could
use “1” to represent the proposition that the number 1 was selected, “2” to
represent 2’s being selected, etc. This will allow us to represent infinitely
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many atomic propositions with only the standard 10 Arabic digits.

So the language isn’t the real problem; the real problem is what credence
value you could possibly assign to each and every one of those positive in-
tegers. To start seeing the problem, imagine you pick some positive real
number r and assign it as your unconditional credence in each positive inte-
ger’s being picked. For any positive real r you pick, there exists an integer
n such that » > 1/n. So now consider the proposition that the positive
integer selected was less than or equal to n. By repeated applications of
finite additivity,

cr(lv2v...vn)=cr(l)+cr(2) +... +cr(n) (5.14)

Each of the credences on the righthand side equals r, so your credence in
the disjunction is r - n. But we selected n such that » > 1/n, sor-n > 1.
And now you’ve violated the probability rules.

This rules out assigning the same positive real value to each and every
positive integer. What other options are there? Historically the most pop-
ular proposal has been to assign each positive integer a credence of 0. Yet
this proposal creates its own problems.

The first problem with assigning each integer zero credence is that we
must reconceive what an unconditional credence of 0 means. So far in this
book we have equated assigning credence 0 to a proposition with ruling that
proposition out as a live possibility. In this case, though, we’ve proposed
assigning credence 0 to each positive integer while still treating each as a live
possibility. So while we will still assign credence 0 to propositions that have
been ruled out, there will now be other types of propositions that receive
credence 0 as well. Similarly, we may assign credence 1 to propositions of
which we are not certain.

Among other things, this reconception of credence 0 will undermine ar-
guments for the Regularity Principle. As stated (Section 4.2), Regularity
forbids assigning credence 0 to any logically contingent proposition. The
argument there was that one should never entirely rule out a proposition
that’s logically possible, so one should never assign such a proposition 0
credence. Now we’ve opened up the possibility of assigning credence 0 to a
proposition without having ruled it out. So while we can endorse the idea
that no contingent proposition should be ruled out, Regularity no longer
follows. Moreover, the current proposal provides infinitely-many explicit
counterexamples to Regularity: we have proposed assigning credence 0 to
the contingent proposition that the positive integer selected was 1, to the
proposition that the integer was 2, that it was 3, etc.
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Once we’ve decided to think about credence 0 in this new way, we en-
counter a second problem: the Ratio Formula. In Section 3.1.1 I framed the
Ratio Formula as follows:

Ratio Formula: For any P and @ in L, if cr(Q) > 0 then

cr(P & Q)
cr(Q)

This constraint relates an agent’s conditional credence cr(P | Q) to her un-
conditional credences only when cr(Q) > 0. As stated, it remains silent
on how an agent’s conditional and unconditional credences relate when
cr(@) = 0.

Yet we surely want to have some rational constraints on that relation
for cases in which an agent assigns credence 0 to a contingent proposition
that she hasn’t ruled out.?’ For example, in the positive integer case con-
sider your conditional credence cr(2]2). Surely this conditional credence
should equal 1. Yet because the current proposal sets cr(2) = 0, the Ratio
Formula cannot tell us anything about cr(2|2). And since we’ve derived all
of our rational constraints on conditional credence from the Ratio Formula,
the Bayesian system we’ve set up isn’t going to deliver a requirement that
cr(2]2) = 1.2

There are various ways to respond to this problem. One interesting
suggestion is to reverse the order in which we proceeded with conditional
and unconditional probabilities: We began by laying down fairly substantive
constraints (Kolmogorov’s probability axioms) on unconditional credences,
then tying conditional credences to those via the Ratio Formula. On the
reverse approach, substantive constraints are first placed on conditional cre-
dences, then some further rule relates unconditional to conditional. The
simplest such rule is that for any proposition P, cr(P) = cr(P|T).

Some advocates of this technique describe it as making conditional cre-
dence “basic”. The way we’'ve approached conditional and unconditional
credences, neither is more fundamental than the other in any sense signif-
icant to metaphysics or the philosophy of mind. Fach is an independently
existing type of doxastic attitude, and any rules we offer relating them are
strictly mormative constraints. The only sense in which the conditionals-
first technique makes conditional credences prior to unconditional is in its
order of normative explanation. Just as the Ratio Formula helped us trans-
form constraints on unconditional credences into constraints on conditional
credences, the rule that cr(P) = cr(P|T) transforms constraints on condi-
tionals into constraints on unconditionals.

a(P|Q) =
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Examples of the conditionals-first technique include (Popper 1955), (Renyi
1970), and (Roeper and Leblanc 1999). Like many of these approaches, Pop-
per includes an axiom that directly addresses cr(Q | Q) for any @ that the
agent deems possible, regardless of its unconditional credence value. This
solves the problem of ensuring that cr(2|2) = 1.

The final problem I want to address with assigning each positive integer
0 unconditional credence of being selected has to do with your unconditional
credence that any integer was selected at all. The proposition that some in-
teger was selected is a disjunction of the proposition that 1 was selected,
the proposition that 2 was selected, the proposition that 3 was selected, etc.
Finite Additivity directly governs unconditional credences in disjunctions
of two (mutually exclusive) disjuncts; iterating that rule extends it to dis-
junctions with finitely many disjuncts. But this case concerns an infinite
disjunction, and none of the constraints we’ve seen so far relates the uncon-
ditional credence of an infinite disjunction to the credences of its disjuncts.

It might seem natural to supplement our credal constraints with the
following:

Countable Additivity: For any countable partition Q1,Q2,Qs,... in L,

cr(@QrvQavQzv...)=cr(Qr)+cr(Q2) +cr(Qz) + ...

Notice that Countable Additivity does not apply to every partition of infinite
size; it applies only to partitions of countably many members. The set of
positive integers is countable, while the set of real numbers is not. (If you
are unfamiliar with infinite sets of differing sizes, I would suggest reading
the brief explanation referenced in this chapter’s Further Readings.)

Countable Additivity naturally extends the idea behind Finite Additivity
to sets of (countably) infinite size. Many authors have found it attractive.
Yet in our example it rules out assigning credence 0 to each proposition
stating that a particular positive integer was selected. Taken together, the
proposition that 1 was selected, the proposition that 2 was selected, the
proposition that 3 was selected, etc. form a countable partition (playing the
role of @1, @2, @3, etc. in Countable Additivity). Countable Additivity
therefore requires your credence in the disjunction of these propositions to
equal the sum of your credences in the individual disjuncts. Yet the latter
credences are each 0, while your credence in their disjunction (namely, the
proposition that some positive integer was selected) must be 1.

So perhaps Countable Additivity wasn’t such a good idea after all. The
trouble is, without Countable Additivity we lose a very desirable prop-
erty:
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Conglomerability: For each proposition P and partition @1, Q2,Qs, ...
in £, cr(P) is no greater than the largest cr(P|Q;) and no less
than the least cr(P|Q;).

In other words, if Conglomerability holds then finding the largest cr(P | Q;)
and the smallest cr(P | Q;) create a set of bounds into which cr(P) must fall.

In defining Conglomerability I didn’t say how large the Q-partitions in
question are allowed to be. We might think of breaking up the general Con-
glomerability principle into a number of sub-cases: Finite Conglomerability
applies to finite partitions, Countable Conglomerability applies to countable
partitions, Continuous Conglomerability applies to partitions of continuum-
many elements, etc. Finite Conglomerability is guaranteed by the standard
probability axioms. You'll prove this in Exercise 5.5, but the basic idea is
that by the Law of Total Probability cr(P) must be a weighted average of
the various cr(P| @), so it can’t be greater than the largest of them or less
than the smallest. With the standard axioms in place, Countable Conglom-
erability then stands or falls with our decision about Countable Additivity;
without Countable Additivity, Countable Conglomerability is false.??

We'’ve already seen that the strategy of assigning equal, 0-credence to
each positive integer’s being selected violates Countable Additivity; let’s see
how it violates (Countable) Conglomerability as well.23 Define “the 1-set”
as the set of positive integers {1, 10,100, 1000, ...}; define “the 2-set” as the
set of positive integers {2, 20,200, 2000, ...}; etc. Now take the proposition
that the integer selected was a member of the 1-set, and the proposition
that the integer selected was a member of the 2-set, and the proposition
that the integer selected was a member of the 3-set, etc. Collect all these
propositions all the n-sets where n is not a multiple of 10. The set of these
propositions forms a partition. (If you think about it carefully, you’ll see
that any positive integer that might have been selected will belong to exactly
one of these sets.)

The distribution strategy we’re considering is going to want to assign

cr(the selected integer is not a multiple of 10 |

the selected integer is a member of the 1-set) =0
(5.15)

Why is that? Well, the only number in the 1-set that is not a multiple of 10
is the number 1. The 1-set contains infinitely many positive integers; on the
supposition that one of those integers was selected you want to assign equal
credence to each one’s being selected; so you assign 0 credence to each one’s
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being selected (including the number 1) conditional on that supposition.
This gives us Equation (5.15). This argument generalizes; for any positive
integer n that is not a multiple of 10, you’ll have

cr(the selected integer is not a multiple of 10 |

the selected integer is a member of the n-set) = 0
(5.16)

Yet unconditionally it seems rational to have
cr(the selected integer is not a multiple of 10) = 9/10 (5.17)

Conditional on any particular member of our partition, your credence that
the selected integer isn’t a multiple of 10 is 0. Yet unconditionally, you're
highly confident that the integer selected is not a mutiple of ten. This is
a flagrant violation of (Countable) Conglomerability—your credences con-
ditional on the members of the (countable) partition are all the same, yet
your unconditional credence has a very different value!

Why is violating Conglomerability a problem? Well, imagine I'm about
to give you some evidence on which you're going to conditionalize. In par-
ticular, I'm about to tell you to which of the n-sets the selected integer
belongs. Whichever piece of evidence you're about to get, your credence
that the integer isn’t a multiple of ten conditional on that evidence is 0.
So you can be certain right now that immediately after receiving the evi-
dence, your credence that the integer isn’t a multiple of ten will be 0. Yet
despite being certain that your better-informed future self will assign a par-
ticular proposition a credence of 0, you continue to assign that proposition
a credence of 9/10 right now. This is a flagrant violation of the Reflection
Principle, as well as generally good principles for evidence management. We
usually adopt a particular opinion while awaiting evidence because we think
that some potential pieces of evidence will pull us away from that opinion
in one direction while other potential pieces will pull us away in the other.
If we know that no matter what evidence comes in we're going to be pulled
away from our current opinion in a particular direction, it seems irrationally
stubborn to maintain our current opinion and not move in that direction
right now. Conglomerability embodies these principles of good evidential
hygiene; without Conglomerability our evidential interactions can begin to
look absurd.

Where does this leave us? We wanted to find a way to assign an equal
credence to each positive integer’s being the one selected. We quickly con-
cluded that equal credence could not be a positive real number. So we
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considered assigning credence 0 to each integer’s being selected. Doing so
violates Countable Additivity (a natural extension of our finite principles
for calculating credences in disjunctions) and Conglomerability, which looks
desirable for a number of reasons. Are there any other options?

I will briefly mention two further possibilities. The first possibility is
to assign each positive integer an infinitesimal credence of having been
selected. To work with infinitesimals, we extend the standard real-number
system to include numbers that are greater than 0 but smaller than all
the positive reals. If we assign each integer an infinitesimal credence of
having been picked, we avoid the problems with assigning a positive real
and also the problems of assigning 0. (For instance, if you pile enough
infinitesimals together they can sum to 1.) Yet infinitesimals involve a great
deal of advanced mathematics, seem implausible candidates for credence
values agents might assign, and introduce troubles of their own (see Further
Readings). So perhaps only one viable option remains: Perhaps if you learn
a positive integer was just selected, it’s impossible to assign equal credence
to each of the possibilities consistent with what you know.

5.5 Jeffrey Conditionalization

Section 4.1.1 showed that conditionalizing on new evidence creates and re-
tains certainties; evidence gained between two times becomes certain at the
later time and remains so ever after. Contraposing, if an agent updates by
Conditionalization and gains no certainties between two times, it must be
because she gained no evidence between those times. In that section we also
saw that if an agent gains no evidence between two times, Conditionaliza-
tion keeps her credences fixed. Putting all this together, we see that under
Conditionalization an agent’s credences change just in case she gains new
certainties. C.I. Lewis affirmed this point as follows:

If anything is to be probable, then something must be certain.
The data which themselves support a genuine probability, must
themselves be certainties. We do have such absolute certain-
ties, in the sense data initiating belief and in those passages of
experience which later may confirm it. (1946, p. 186)

As we noted in Section 4.2, many contemporary epistemologists are un-
comfortable with this kind of foundationalism (and even more so with ap-
peals to sense data). Richard C. Jeffrey, however, had a slightly different
concern, which he expressed with the following example and analysis:
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The agent inspects a piece of cloth by candlelight, and gets the
impression that it is green, although he concedes that it might
be blue or even (but very improbably) violet. If G, B, and V
are the propositions that the cloth is green, blue, and violet,
respectively, then the outcome of the observation might be that,
whereas originally his degrees of belief in G, B, and V were .30,
.30, and .40, his degrees of belief in those same propositions after
the observation are .70, .25, and .05. If there were a proposition
F in his preference ranking which described the precise quality
of his visual experience in looking at the cloth, one would say
that what the agent learned from the observation was that F is
true. ...

But there need be no such proposition E in his preference rank-
ing; nor need any such proposition be expressible in the English
language. Thus, the description “The cloth looked green or pos-
sibly blue or conceivably violet,” would be too vague to convey
the precise quality of the experience. Certainly, it would be too
vague to support such precise conditional probability ascriptions
as those noted above. It seems that the best we can do is to de-
scribe, not the quality of the visual experience itself, but rather
its effects on the observer, by saying, “After the observation, the
agent’s degrees of belief in G, B, and V were .70, .25, and .05.”
(1965, pp. 165-6)

Jeffrey’s concern was that even if we granted the existence of a sense da-
tum for each potential learning experience, the quality of that sense datum
might not be representable in a proposition to which the agent could assign
certainty, or at least might not be representable in a precise-enough proposi-
tion to differentiate that sense datum from other nearby data with different
effects on the agent’s credences.

At the time Jeffrey was writing the standard Bayesian updating norm
(Conditionalization) relied on the availability of such propositions. Jeffrey
therefore felt the need to provide a new updating rule, capable of handling
examples like the cloth one above. He proposed what he called a probabil-
ity kinematics, now universally known as

Jeffrey Conditionalization: Given any ¢; and ¢; with ¢ < j, any A in
L, and a finite partition Bi, Bs, ..., B, in £ whose elements each
have nonzero cr;,

crj(A) = crij(A| By)-crj(By)+cri(A| Ba)-crj(Ba)+...4+cri(A| By)-crj(By)
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Let’s apply Jeffrey Conditionalization to the cloth example. Suppose I'm
fishing around in a stack of my family’s clean laundry looking for any shirt of
mine, but the lighting is dim because I don’t want to turn on the overheads
and awaken my wife. The color of a shirt in the stack would be a strong
clue as to whether it was mine, as reflected by my conditional credences:

cr(mine | G) = 0.80
cry(mine| B) = 0.50 (5.18)

cry(mine| V) =0

For simplicity’s sake we imagine green, blue, and violet are the only color
shirts I imagine I might fish out of the stack. At ¢; I pull out a shirt.
Between t; and t5 I take a glimpse of the shirt. According to Jeffrey’s story,
my unconditional credence distributions across the G/B/V partition are:

cr1(G) = 0.30 cr1(B) = 0.30 cr1 (V) = 0.40

5.19
cro(G) = 0.70 cro(B) = 0.25 cro(V) = 0.05 (5.19)

Applying Jeffrey Conditionalization, I find my credence in the target propo-
sition at the later time by combining my post-update unconditional cre-
dences across the partition with my pre-update credences in the target
proposition conditional on elements of the partition. This yields:

cra(mine) =
cry(mine | G) - cra(G) + crp(mine | B) - cra(B) + crp(mine | V) - cra(V) =
0.80-0.704+0.50-0.25+0-0.05 =

0.685
(5.20)

The low-light glimpse makes me fairly confident that the shirt I’ve selected
is mine. (A quick calculation with the Law of Total Probability reveals that
before the update I was 0.39 confident that the shirt was mine.)

Jeffrey Conditionalization allows us to represent evidential experiences
that redistribute unconditional credence over a partition in virtually any
way. (The only constraints are the probability axioms’ demands that the
resulting values be non-negative and sum to 1.) No proposition need go to
certainty in this process. This means that unlike traditional Conditionaliza-
tion, Jeffrey Conditionalization is perfectly consistent with the Regularity
Principle (which forbids logically contingent propositions from receiving cre-
dence 0). An agent may Jeffrey Conditionalize as many times as she likes
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without any contingent proposition’s credence going to 1 or 0. In fact, so
long as the agent sends no propositions to certainty, Jeffrey Conditional-
ization is reversible: a proposition sent to high unconditional credence by a
Jeffrey update may be sent back to low credence by a subsequent update.
This contrasts with Conditionalization’s irreversible setting of evidence to
certainty.

These properties have made Jeffrey Conditionalization amenable to Reg-
ularity theorists, whose insistence on regular credence distributions forces
them to reject Conditionalization. But Jeffrey Conditionalization can also
allow learning by conditionalizing. In arguing for his new kinematics, Jef-
frey was concerned only to establish that some learning experiences send
no proposition to certainty; he didn’t need to argue that no learning expe-
riences do so. While Jeffrey’s updating rule can be usefully applied even if
no one ever conditionalizes (as the Regularity theorist supposes), it is also
consistent with Conditionalization.

Here’s how. Jeffrey Conditionalization’s key feature is that for the se-
lected partition B1, Bo, ..., B,, the following condition is maintained:

Rigidity: For any A in £ and any B,
crj(A|Bp,) = cri(A| By,)

In the cloth example, my credence that the shirt I've selected is mine is a
function of two kinds of credences: for each color, my unconditional credence
that the selected shirt is that color; and for each color, my credence that the
shirt is mine conditional on its being that color. My overall credence that
the shirt is mine changes when I get a glimpse of its color, but only because
the first kind of credence changes. 1 change my opinion about what color
the shirt is, but I don’t change my confidence that it’s my shirt given that
(say) it’s green. I know what percentage of the green shirts in the house
are mine; I just don’t know if this is a green shirt. The rigidity condition
points out which values remain fixed in this example, with A representing
the proposition that the shirt is mine and the B,, representing the colors in
the partition.

Jeffrey thought rigidity was appropriate for updates that “originated”
in the B,, partition.?* In the cloth example, my credal changes in non-
color propositions from t; to to are driven by changes in my color credences
caused by my experience. Using the probability axioms and Ratio Formula,
one can prove that Jeffrey Conditionalization holds over a partition just
in case rigidity is maintained for that partition. (See Exercise 5.7.) So
Jeffrey thought his updating rule applied whenever a change in credence
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originated in the partition Bi, Bs, ..., B,,. In that case, given the agent’s full
cr; distribution and her cr; credences in the B,,, Jeffrey Conditionalization
will output a full cr; distribution over L.

Traditional Conditionalization (sometimes called “strict Conditionaliza-
tion” to contrast with Jeffrey’s rule) is consistent with Jeffrey Conditional-
ization because it also maintains a version of rigidity. One way for an update
to originate in a partition By, Bs, ..., By is for the agent to become certain
that a particular disjunction of the By, is true. When an agent conditional-
izes on such a disjunction, it will turn out that for any A in £ and any B;
with nonzero credence at ¢; (so that crj(A|B;) is defined under the Ratio
Formula),

CI'J'(A | Bz) = CI‘Z'(A | Bl) (521)

(This was proven in exercise 4.8.) When an agent learns evidence expressible
in terms of a particular partition, conditionalizing on that evidence main-
tains rigidity in that partition. In these cases, strict Conditionalization is a
special case of Jeffrey Conditionalization.

While Jeffrey Conditionalization is an exceedingly flexible tool, it does
have some drawbacks. Unlike Conditionalization, Jeffrey Conditionalization
is neither cumulative nor commutative. Jeffrey himself recognized these fea-
tures, offering an example in which we first change an agent’s unconditional
credence in B to p (using B/~B as our partition) and then change the un-
conditional credence in C' to ¢ (using the C'/~C partition). In some such
cases there will be no proposition such that these two Jeffrey updates have
the same cumulative result as a single Jeffrey update changing the credence
of that proposition to some r. Further, we can consider the simple situa-
tion in which B and C are identical but p # ¢; that is, we perform two
Jeffrey updates in succession that directly adjust the agent’s unconditional
credence in the same proposition. Clearly adjusting cr(B) to p and then
adjusting cr(B) to some different ¢ will leave the agent with a different final
credence distribution than first adjusting cr(B) to ¢ and then adjusting it
to p. Jeffrey Conditionalization does not commute, which is problematic if
you think that the effects of evidence on an agent should not depend on the
order in which pieces of evidence arrive.

Finally, Jeffrey Conditionalization can be seen as a generalization of
Conditionalization to broader sorts of evidential experiences. Conditional-
ization handles only evidence that sets unconditional credences to certainty.
Jeffrey Conditionalization expands that reach by covering evidence that sets
unconditional credences to nonextreme values. But what if an agent receives
evidence that directly alters her conditional credences? How can we calcu-
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late the effects of such evidence on her other degrees of belief? van Fraassen
(1981) describes a “Judy Benjamin Problem” in which direct alteration of
conditional credences plausibly occurs, and which cannot be solved by Jef-
frey Conditionalization.?®

5.6 Exercises

Unless otherwise noted, you should assume when completing these exercises
that the Pr-distributions under discussion satisfy the probability axioms and
Ratio Formula. You may also assume that whenever a conditional Pr ex-
pression occurs, the needed proposition has nonzero unconditional credence
so that conditional credences are well-defined.

Problem 5.1. At noon I rolled a 6-sided die. It came from either the
Fair Factory (which produces exclusively fair dice), the Snake-Eyes Factory
(which produces dice with a 1/2 chance of coming up 1 and equal chance
of each other outcome), or the Boxcar Factory (which produces dice with a
1/4 chance of coming up 6 and equal chance of each other outcome).

(a) Suppose you use the Principle of Indifference to assign equal credence to
each of the three factories from which the die might have come. Applying
the Principal Principle, what is your credence that my die roll came up
37

(b) Maria tells you that the die I rolled didn’t come from the Boxcar Factory.
If you update on this new evidence by Co nditionalization, how confident
are you that the roll came up 37

(c¢) Is Maria’s evidence admissible with respect to the outcome of the die
roll? Explain.

(d) After you've incorporated Maria’s information into your credence dis-
tribution, Ron tells you the roll didn’t come up 6. How confident are
you in 3 after conditionalizing on Ron’s information?

(e) Is Ron’s evidence admissible with respect to the outcome of the die roll?
Explain.

Problem 5.2. The expert deference principle in Equation (5.9) resembles
the Principal Principle in many ways. Yet that expert deference principle
makes no allowance for anything like inadmissible information. What kind
of information should play the role for expert deference that inadmissible
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information plays for deference to chances? How should Equation (5.9) be
modified to take such information into account?

Problem 5.3. Suppose it is currently ¢;, and to and t3 are times in the
future (with t3 after ¢3). At 1, you satisfy the probability axioms, Ratio
Formula, and Reflection Principle. You are also certain at ¢; that you will
satisfy these constraints at to. However, for some proposition X your t;
credences are equally divided between the following two (mutually exclusive
and exhaustive) hypotheses about what your ¢y self will think of your ¢3
credences:

Y: (crofer3(X) =1/10] =1/3) & (crafcrs(X) = 2/5] = 2/3)
Z: (crofcrs(X) = 3/8] = 3/4) & (craferz(X) = 7/8] = 1/4)

Given all this information, what is cr1(X)? (Be sure to explain your rea-
soning clearly.)

Problem 5.4. Can you think of any kind of real-world situation in which
it would be rationally permissible to violate the Reflection Principle? Ex-
plain the situation you’re thinking of, and why it would make a Reflection
violation okay.

Problem 5.5. Using Non-Negativity, Normality, Finite Additivity, the Ra-
tio Formula, and any results we've proven from those four, prove Finite
Conglomerability. (Hint: The Law of Total Probability may be useful here.)

Problem 5.6. Suppose that at ¢; you assign a “flat” credence distribution
over language £ whose only two atomic propositions are B and C—that
is, you assign equal credence to each of the four state-descriptions of L.
Between t; and o you perform a Jeffrey Conditionalization that originates
in the B/~ B partition and sets cra(B) = 2/3. Between t3 and t3 you perform
a Jeffrey Conditionalization that originates in the C'/~C partition and sets
crg(C) = 3/4.

(a) Calculate your crp and crg distributions.

(b) Show that there is no proposition in £ such that crg could be generated
directly from cr; by a Jeffrey Conditionalization that originated in the
partition consisting of that proposition and its negation. (This demon-
strates that Jeffrey Conditionalization is not cumulative, as suggested
in the text.)
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Problem 5.7. Prove that Jeffrey Conditionalization is equivalent to Rigid-
ity. That is: Given any times t; and ¢;, proposition A in £, and finite
partition By, Bo,..., B, in £ whose elements each have nonzero cr;, the
following two conditions are equivalent:

L. crjgg) ): cri(A| By)-crj(Bi) +cri(A| Bg) -crj(Ba) + ...+ cri(A| By) -

2. For all By, in the partition, crj(A|B,,) = cr;(A| Bp,).

(Hint: Complete two proofs—first condition 2 from condition 1, then wvice
versa.)

Problem 5.8. Suppose we apply Jeffrey Conditionalization over a finite
partition By, Bs,..., B, in L to generate crs from cry. Show that we could
have obtained the same cro from cry in the following way: start with crq;
Jeffrey Conditionalize it in a particular way over a partition containing only
two propositions; Jeffrey Conditionalize the result of that operation in a
particular way over a partition containing only two propositions (possibly
different from the ones used the first time); repeat this process a finite
number of times until cry is eventually obtained.*

5.7 Further reading

SUBJECTIVE AND OBJECTIVE BAYESIANISM

Alan Héjek (2011b). Interpretations of Probability. In: The
Stanford Encyclopedia of Philosophy. Ed. by Edward N.
Zalta. Winter 2011. URL: http://plato.stanford.edu/archives/win2011/entries/probabil
interpret/

Survey of the various historical interpretations of probability, with extensive
references.

Bruno de Finetti (1931/1989). Probabilism: A Critical Essay on
the Theory of Probability and the Value of Science. Erken-
ntnis 31. Translation of B. de Finetti, Probabilismo, Logos
14: 163-219., pp. 169-223

Classic paper critiquing objective interpretations of probability and advo-
cating a Subjective Bayesian (in the semantic sense) approach.

*1 owe this problem to Sarah Moss.
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Donald Gillies (2000). Varieties of Propensity. British Journal
for the Philosophy of Science 51, pp. 807-835

Reviews different versions of the propensity theory and their motivations.
Focuses at the end on how propensity theories might respond to Humphreys’
Paradox.

DEFERENCE PRINCIPLES

David Lewis (1980). A Subjectivist’s Guide to Objective Chance.
In: Studies in Inductive Logic and Probability. Ed. by Richard
C. Jeffrey. Vol. 2. Berkeley: University of California Press,
pp. 263-294

Lewis’s classic article laying out the Principal Principle and its consequences
for theories of credence and chance.

Adam Elga (2007). Reflection and Disagreement. Nots 41,
pp. 478-502

Offers principles for deferring to many different kinds of agents, including
experts, gurus (individuals with good judgment who lack some of your ev-
idence), past and future selves, and peers (whose judgment is roughly as
good as your own).

Bas C. van Fraassen (1984). Belief and the Will. The Journal
of Philosophy 81, pp. 235256

Article in which van Fraassen proposes and defends the Reflection Principle.

Jonathan Weisberg (2007). Conditionalization, Reflection, and
Self-Knowledge. Philosophical Studies 135, pp. 179-197

Discusses conditions under which Reflection can be derived from Condition-
alization, and vice versa.

THE PRINCIPLE OF INDIFFERENCE

E. T. Jaynes (1957a). Information Theory and Statistical Me-
chanics I. Physical Review 106, pp. 620-30

E. T. Jaynes (1957b). Information Theory and Statistical Me-
chanics II. Physical Review 108, pp. 171-90
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E.T. Jaynes introduces the Maximum Entropy approach.

Teddy Seidenfeld (1986). Entropy and Uncertainty. Philosophy
of Science 53, pp. 467-491

Explains the flaws with Jaynes’s Maximum Entropy approach discussed at
the end of Section 5.3, along with several others. Also contains useful ref-
erences to Jaynes’s many defenses of Maximum Entropy over the years and
to the critical discussion that has ensued.

CREDENCES FOR INFINITE POSSIBILITIES

David Papineau (2012). Philosophical Devices: Proofs, Proba-
bilities, Possibilities, and Sets. Oxford: Oxford University
Press

Chapter 2 offers a highly accessible introduction to the cardinalities of vari-
ous infinite sets. (Note that Papineau uses “denumerable” where we use the
term “countable”.)

Alan Hajek (2003). What Conditional Probability Could Not
Be. Synthese 137, pp. 273-323

Assesses the viability of the Ratio Formula as a definition of conditional
probability in light of various infinite phenomena and plausible violations of
Regularity.

Timothy Williamson (2007). How Probable Is an Infinite Se-
quence of Heads? Analysis 67, pp. 173-80

Brief introduction to the use of infinitesimals in probability distributions,
followed by an argument against using infinitesimals to deal with infinite
cases.

Kenny Easwaran (2014). Regularity and Hyperreal Credences.
Philosophical Review 123, pp. 1-41

Excellent, comprehensive discussion of the motivations for Regularity, the
mathematics of infinitesimals, arguments against using infinitesimals to se-
cure Regularity (including Williamson’s argument), and an alternative ap-
proach.

JEFFREY CONDITIONALIZATION
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Richard C. Jeffrey (1965). The Logic of Decision. 1st. McGraw-
Hill series in probability and statistics. New York: McGraw-
Hill

Chapter 11 contains Jeffrey’s classic presentation of his “probability kine-
matics”, now universally known as “Jeffrey Conditionalization”.

Notes

IThe frequency theory is sometimes referred to as “frequentism” and its adherents as
“frequentists”. However “frequentism” more often refers to a school of statistical practice
at odds with Bayesianism (which we’ll discuss in Chapter XX). The ambiguity probably
comes from the fact that most people in that statistical school also adopt the frequency
theory as their interpretation of probability. But the positions are logically distinct and
should be denoted by different terms. So I will use “frequency theory” here, and reserve
“frequentism” for my later discussion of the statistical school.

2For many, many more see (Hajek 1996) and its sequel (Hajek 2009b).

3For one thing, the number of fair coin flips that will ever occur in the history of the
universe is finite, and it might very well be an odd number!

4The frequency theory will also need to work with counterfactuals if nonextreme prob-
abillities can be meaningfully ascribed to a priori truths, or to metaphysical necessities.
(Might a chemist at some point have said, “It’s highly probable that water is HoO”?)
Assigning nonextreme frequencies to such propositions’ truth involves possible worlds far
away from the actual.

This difficulty for the propensity theory is often known as Humphreys’ Paradox,
since it was proposed in (Humphreys 1985).

One might respond by suggesting that propensities don’t follow the standard mathe-
matical rules of probability. And in fact, it’s not obvious why they should. The frequency
theory clearly yields probabilistic values: in any sequence of event repetitions a given out-
come has a non-negative frequency, the tautologous outcome has a frequency of 1, and
mutually exclusive outcomes have frequencies summing to the frequency of their disjunc-
tion. But establishing that propensity values (objective chances) satisfy the probability
axioms takes argumentation from one’s metaphysics of propensity. Nevertheless, most
authors assume that propensities do satisfy the axioms; if they didn’t, the propensity
interpretation’s probabilities wouldn’t count as probabilities in the mathematician’s sense
(Section 2.2).

50ne could focus here on a metaphysical distinction rather than a semantic one—
instead of asking what probability talk means, I could ask what probabilities are. But
some of the probability interpretations we will discuss don’t have clear metaphysical com-
mitments. The logical interpretation, for instance, takes probability to be a logical rela-
tion, but need not go on to specify an ontology for such relations. So I will stick with
a semantic distinction, which in any case matches how these questions were discussed in
much of twentieth-century analytic philosophy.

In the twentieth century Subjective Bayesianism was also typically read as a form of
expressivism; individuals’ probability talk expressed their credal attitudes towards propo-
sitions without having truth-conditions. Nowadays there are other Subjective Bayesian
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semantics that interpret probability talk in a more cognitivist mode, while still seeing it
as reflecting agents’ subjective degrees of belief.

8Carnap himself did not believe all probability talk picked out the logical values just
described. Instead, he thought “probability” was ambiguous between two meanings, one
of which was logical probability and the other of which had more of a frequency interpre-
tation.

9There is disagreement about whether the logical and evidential interpretations of prob-
ability should be considered Objective Bayesian in the semantic sense. Popper (1957) says
that objective interpretations make probability values objectively testable. Logical and ev-
idential probabilities don’t satisfy that criterion, and Popper seems to class them as sub-
jective interpretations. Yet other authors (such as (Galavotti 2005)) distinguish between
logical and subjective interpretations. I have defined the semantic Subjective/Objective
Bayesian distinction such that logical and evidential interpretations count as Objective;
while they may be normative for the attitudes of agents, logical and evidential probabilities
do not vary with the attitudes particular agents possess.

10As T explained in Chapter 4, note 15, defining hypothetical priors as regular does not
commit anyone to Regularity as a rational constraint.

Since the ratio of B-outcomes to A-events must always fall between 0 and 1, this
principle sheds some light on why credence values are usually scaled from 0 to 1. (Compare
note 5 above.)

12Notice that the time #; to which the chance in the Principal Principle is indexed
need not be the time at which the agent in question assigns her credence concerning the
experimental outcome A. In our coin example, the agent forms her credence at 1pm
about the coin flip outcome at noon using information about the chances at noon. This
is significant because on some metaphysical theories of chance, once the coin flip lands
heads (or tails) the chance of H goes to 1 (or 0) forevermore. Yet even if the chance of H
has become extreme by 1pm, the Principal Principle may still direct an agent to assign a
nonextreme 1pm credence to H if all she knows are the chances from an earlier time.

I should also note that because chances are time-indexed, the notion of admissibility
must be time-indexed as well. The information about the wad of chewing gum is admissible
relative to 11:30am chances—learning about the chewing gum affects your credence about
the flip outcome by way of your opinions about the 11:30am chances. But the information
that chewing gum was stuck to the coin after 11 is inadmissible relative to the 11:00am
chances. (Chewing gum information affects your credence in H, but not by influencing
your opinions about the chances associated with the coin at 11:00am.) So strictly speaking
we should ask whether a piece of information is admissible for a particular proposition
relative to the chances at a given time. I have suppressed this complication in the main
text.

13The justification I've just provided for Equation (5.11) uses explicitly every one of the
enumerated conditions except Condition 3. Condition 3 is necessary so that the conditional
credence in Equation (5.11) is well-defined according to the Ratio Formula.

140ne complication here is that van Fraassen sometimes describes Reflection as relating
attitudes, but other times portrays it as being about various acts of commitment, and
therefore more directly concerned with assertions and avowals than with particular mental
states.

5Farlier we saw that under the Reflection Principle, opinions about your future cre-
dences may influence other credences you assign now. van Fraassen’s argument for Condi-
tionalization runs in the opposite direction, from credences you assign now to what you’ll
do in the future.
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16Recall from Chapter 4 that conditionalizing keeps intact credence ratios among state-
descriptions that are not eliminated by the evidence conditionalized upon. So if the
Principle of Indifference requires an agent to assign state-descriptions equal credence in a
particular evidential situation, that will be possible only if the agent’s hypothetical prior
assigns those state-descriptions equal credence as well. In general, once the various defer-
ence principles we’ve discussed have been satisfied by a rational hypothetical prior, that
prior will have to distribute equal credence among all the possibilities that remain. (This
will introduce complications if the hypothetical prior distributes credence over infinitely
many possibilities; we’ll come to those in the next section.)

17 Joyce (2005)Joyce, James M. reports that this sort of problem was first identified by
John Venn in the 1800s.

'8 This example is adapted from one in (Salmon 1966, pp. 66-7). A related example is van
Fraassen’s (1989) Cube Factory, which describes a factory making cubes of various sizes
and asks how confident I should be that a given manufactured cube has a size falling within
a particular range. The Principle of Indifference yields conflicting answers depending on
whether cube size is described in terms of side length, face area, or volume.

19Tn Chapter XXX we will discuss a different credal response to this kind of ignorance.

20What about cases in which an agent has ruled out the proposition Q? Should rational
agents assign credences conditional on conditions that they’ve ruled out? For discussion
and references on this question, see (Titelbaum 2013, Ch. 5).

21T was careful to define the Ratio Formula so that it simply goes silent when cr(Q) = 0,
and is therefore in need of supplementation if we want to constrain values like cr(2]2).
Other authors define the Ratio Formula so that it contains the same equation as ours
but leaves off the restriction to cr(Q)) > 0 cases. This forces an impossible calculation
when cr(Q) = 0. Alternatively, one can leave the Ratio Formula unrestricted but make its
equation cr(P| Q) - cr(Q) = cr(P & Q). This has the advantage of being true even when
cr(Q) = 0 (because cr(P & Q) will presumably equal 0 as well), but does no better than
our Ratio Formula on constraining the value of cr(2|2). (Any value we fill in for that
conditional credence will make the relevant multiplication-equation true.)

22Seidenfeld /Schervish/Kadane [CITE] shows that this pattern generalizes: At each in-
finite cardinality, we cannot secure the relevant Conglomerability principle with Additivity
principles at lower cardinalities; Conglomerability at a particular level requires Additivity
at that same level.

231 owe the example that follows to Brian Weatherson.

24 Actually, Jeffrey’s original proposal was a bit more complicated than that. In (Jeffrey
1965) he began with a set of propositions Bi, Ba, ..., Bn in which the credence change
originated, but did not require the B,, to form a partition. Instead, he constructed a
set of “atoms”, which we can think of as state-descriptions constructed from the B,,.
(Each atom was a consistent conjunction in which each B,, appeared exactly once, either
affirmed or negated.) The rigidity condition (which Jeffrey sometimes called “invariance”)
and Jeffrey Conditionalization were then applied to these atoms rather than directly to
the B, in which the credence change originated.

Notice that in this construction the atoms form a partition. Further, Jeffrey recog-
nized that if the B, themselves formed a partition, the atoms wound up in a one-to-one
correspondence with the B,, to which they were logically equivalent. I think it’s for this
reason that Jeffrey later (2004, Ch. 3) dropped the business with “atoms” and applied
his probability kinematics directly to any finite partition.

ZInterestingly, the main thrust of van Fraassen’s article is that while Maximum En-
tropy is capable of providing a solution to the Judy Benjamin Problem, that solution is
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intuitively unappealing.



