
Chapter 4

Updating by
Conditionalization

Up to this point we have discussed synchronic credence constraints—rationally-
required relations among the degrees of belief an agent assigns at a given
time. This chapter introduces the fifth (and final) core normative Bayesian
rule, Conditionalization. Conditionalization is a diachronic rule, requiring
an agent’s degrees of belief to line up in particular ways across times.

I begin by laying out the rule and some of its immediate consequences.
We will then practice applying Conditionalization using Bayes’ Theorem.
Some of Conditionalization’s consequences will prompt us to ask what no-
tions of learning and evidence pair most naturally with the rule. I will
also explain why it’s important to attend to an agent’s total evidence in
evaluating her responses to learning.

Finally, we will see how Conditionalization helps Bayesians distinguish
two influences on an agent’s opinions: the content of her evidence, and her
tendencies to respond to evidence in particular ways. This will lead to
Chapter 5’s discussion of how many distinct responses to the same evidence
could be rationally permissible. Differing answers to that question provide
a crucial distinction between Subjective and Objective Bayesianism.

4.1 Conditionalization

Suppose I tell you I just rolled a fair 6-sided die, and give you no further
information about how the roll came out. Presumably you assign equal
unconditional credence to each of the 6 possible outcomes, so your credence
that the die came up 6 will be 1{6. I then ask you to suppose that the roll
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84 CHAPTER 4. UPDATING BY CONDITIONALIZATION

came up even (while being very clear that this is just a supposition—I’m still
not revealing anything about the outcome). Applying the Ratio Formula
to your unconditional distribution, we find that rationality requires your
credence in 6 conditional on the supposition of even to be 1{3. Finally, I
break down and tell you that the roll actually did come up even. Now how
confident should you be that it came up 6?

I hope the obvious answer is 1{3. When you learn that the die actu-
ally came up even, the effect on your confidence in a 6 is identical to the
effect of merely supposing evenness. This relationship between learning and
supposing is captured in Bayesians’ credence-updating rule:

Conditionalization: For any time ti and later time tj , if proposition E
in L represents everything the agent learns between ti and tj and
cripEq ą 0, then for any H in L,

crjpHq “ cripH |Eq

where cri and crj are the agent’s credence distributions at the two times.
Conditionalization captures the idea that the agent’s credence in H at tj—
after learning E—should equal her earlier ti credence in H had she merely
been supposing E. If we label the two times in the die-roll case t1 and t2,
Conditionalization tells us that

cr2p6q “ cr1p6 |Eq (4.1)

which equals 1{3 (given your unconditional distribution at t1).

Warning: Some theorists take Conditionalization to define condi-
tional credence. For them, to assign the conditional credence
cripH |Eq “ r just is to be disposed to assign crjpHq “ r should you
learn E. As I said in Chapter 3, I take conditional credence to be a
genuine mental state, manifested by the agent in various ways at ti
(what she’ll say in conversation, what sorts of bets she’ll accept, etc.)
beyond just her dispositions to update. For us, Conditionalization
represents a normative constraint relating the agent’s unconditional
credences at a later time to her conditional credences earlier on.

Combining Conditionalization with the Ratio Formula gives us

crjpHq “ cripH |Eq “
cripH & Eq

cripEq
(4.2)
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Figure 4.1: Updating H on E

H

E

(when cripEq ą 0). A Venn diagram shows why dividing these particular
ti credences should yield the agent’s credence in H at tj . In Chapter 3 we
used a diagram like Figure 4.1 to understand conditional credences. There
the white circle represented a set of possibilities to which the agent had
temporarily narrowed her focus in order to entertain a supposition.

Now let’s imagine the rectangle represents all the possible worlds the
agent entertains at ti (her doxastically possible worlds). The size of the H-
circle represents the agent’s unconditional ti credence in H. Between ti and
tj the agent learns that E is true. Among the worlds she had entertained
before, the agent now excludes all the non-E worlds. Her set of doxastic
possibilities narrows down to the E-circle; in effect, the E-circle becomes
the agent’s new rectangle. How unconditionally confident is the agent in H
now? That depends what fraction of her new doxastic space is occupied
by H-worlds. And this is what Equation (4.2) calculates: it tells you what
fraction of the E-circle is occupied by H & E worlds.

As stated, the Conditionalization rule is useful for calculating a single
unconditional credence value after an agent has gained evidence. But what
if you want to generate the agent’s entire tj credence distribution at once?
We saw in Chapter 2 that the agent’s entire ti credence distribution can be
specified by a stochastic truth-table, which gives the agent’s unconditional
credence in each state-description of L. To satisfy the probability axioms,
the credence values in a stochastic truth-table must be non-negative and
sum to 1. The agent’s unconditional credence in any (non-contradictory)
proposition can then be determined by summing her credences in the state-
descriptions on which that proposition is true.

When an agent updates her credence distribution by applying Condition-
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alization to some learned proposition E, we say that she “conditionalizes on
E”. To calculate the stochastic truth-table values resulting from such an
update, we apply a two-step process:

1. Give credence 0 to all state-descriptions inconsistent with the evidence
learned.

2. Multiply each remaining nonzero credence by the same constant so
that they all sum to 1.

As an example, let’s consider what happens to your confidence that the fair
die roll came up prime1 when you learn that it came up even.

P E cr1 cr2
T T 1{6 1{3

T F 1{3 0

F T 1{3 2{3

F F 1{6 0

Here we’ve used a language L with atomic propositions P and E repre-
senting “prime” and “even”. The cr1 column represents your unconditional
credences at time t1, while the cr2 column represents your t2 credences.
Between t1 and t2 you learn that the die came up even. That’s inconsis-
tent with the second and fourth state-descriptions, so in the first step of
our update process their cr2-values go to 0. The cr1-values of the first and
third state-descriptions (1{6 and 1{3 respectively) add up to only 1{2. So
we multiply both of these values by 2 to obtain unconditional t2-credences
summing to 1.2

In this way, we generate your unconditional state-description credences
at t2 from your state-description credences at t1. We can then calculate
cr2-values for other propositions. For instance, adding up the cr2-values on
the lines that make P true, we find that

cr2pP q “ 1{3

Given your initial distribution, your credence that the die came up prime
after learning that it came up odd is required to be 1{3. Hopefully that
squares with our intuitions about rational requirements in this case!

One final note: Our two-step process for updating stochastic truth-tables
leads to a handy trick. Notice that in the second step of the process, every
state-description that hasn’t been set to zero is multiplied by the same
constant. When two values are multipled by the same constant, the ratio
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between them remains intact. This means that if two state-descriptions
have nonzero credence values after an update by Conditionalization, those
values will stand in the same ratio as they did before the update. This fact
will prove useful for problem-solving later on. (Notice that it applies only
to state-descriptions; propositions that are not state-descriptions may not
maintain their credence ratios after a conditionalization.)

4.1.1 Consequences of Conditionalization

If we adopt Conditionalization as our updating norm, what follows? When
an agent updates by conditionalizing on E, her new credence distribution
is just her earlier distribution conditional on E. In Section 3.1.2 we saw
that if an agent’s credence distribution obeys the probability axioms and
Ratio Formula, then the distribution she assigns conditional on any partic-
ular proposition (in which she has nonzero credence) will be probabilistic as
well. This yields the important result that if an agent starts off obeying the
probability axioms and Ratio Formula and then updates by Conditionaliza-
tion, her resulting credence distribution will satisfy the probability axioms
as well.3

The process may then iterate. Having conditionalized her probabilis-
tic cr1 distribution on some evidence E to obtain probabilistic credence
distribution cr2, the agent may then gain further evidence E1, which she
conditionalizes upon to obtain cr3 (and so on). Moreover, Conditionaliza-
tion has the elegant mathematical property of being cumulative: Instead
of obtaining cr3 from cr1 in two steps—first conditionalizing cr1 on E to
obtain cr2, then conditionalizing cr2 on E1 to obtain cr3—we can generate
the same cr3 distribution by conditionalizing cr1 on E & E1, a conjunction
representing all the propositions learned between t1 and t3. (You’ll prove
this in Exercise 4.3.) Because Conditionalization is cumulative it is also
commutative: Conditionalizing first on E and then E1 has the same effect
as conditionalizing in the opposite order.

An agent might learn many things between times ti and tj . Conditional-
ization requires E to represent everything the agent learned between those
times, so we usually make E a conjunction of all the propositions learned.
Suppose that A is one of the propositions the agent learns between ti and
tj , and is therefore a conjunct of E. Clearly E ( A. Applying Conditional-
ization and our other core rules, we obtain

crjpAq “ cripA |Eq “ 1 (4.3)

This follows from Equation (3.21), in which we showed that anything en-
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tailed by the condition in a conditional credence expression gets conditional
credence 1. Equation (4.3) also applies if we replace A with E; conditional-
izing on E always yields crjpEq “ 1.

Thus Conditionalization creates certainties; any proposition learned be-
tween two times becomes certain at the later time. Conditionalization also
maintains certainties. If an agent is certain of a proposition at ti and up-
dates by Conditionalization, she will remain certain of that proposition at
tj . That is, if cripHq “ 1 then Conditionalization yields crjpHq “ 1 as well.
On a stochastic truth-table, this means that once a state-description receives
credence 0 at a particular time (the agent’s certainties at that time rule that
state of the world out for her), it will receive credence 0 at all subsequent
times as well.

In Exercise 4.2 you’ll prove that Conditionalization retains certainties
from the probability axioms and Ratio Formula. But it’s easy to see why
this occurs on a Venn diagram. You’re certain of H at ti when H is true in
every world you consider a live doxastic possibility. Conditionalizing on E
strictly narrows the set of possible worlds you entertain. So if H was true
in every world you entertained before conditionalizing, it’ll be true in every
world you entertain afterwards as well.

Combining these consequences of Conditionalization yields a somewhat
counterintuitive result, to which we’ll return in later discussions. Condition-
alizing on E between two times makes that proposition (and any conjunct
it contains) certain. Future updates by Conditionalization will then retain
that certainty. So if an agent updates by conditionalizing throughout her
life, any piece of evidence she learns at any point will remain certain for her
ever after.

What if an agent doesn’t learn anything between two times? Bayesians
represent an empty evidence set as a tautology. So when an agent gains no
information between ti and tj , Conditionalization yields

crjpHq “ cripH |Tq “ cripHq (4.4)

for any H in L. (The latter half of this equation comes from Equation
(3.6), in which we showed that credences conditional on a tautology equal
unconditional credences.) If an agent learns nothing between two times
and updates by Conditionalization, her degrees of confidence will remain
unchanged.
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4.1.2 Probabilities are weird! The Base Rate Fallacy

Some authors make the mistake of thinking Bayes’ Theorem follows from
Conditionalization. As we saw in Section 3.1.3, this is incorrect: Bayes’
Theorem can be derived exclusively from the probability calculus and Ratio
Formula. Still, Conditionalization gives Bayes’ Theorem added significance.
Conditionalization tells us that your unconditional credence in a hypothesis
H after updating on some evidence E should equal the posterior you assigned
before updating—that is, cripH |Eq. Bayes’ Theorem is a tool for calculating
this posterior from other credences you assign at ti. As new evidence comes
in over time and we repeatedly update by conditionalizing, Bayes’ Theorem
can be a handy tool for generating new credences from old.

For example, we could’ve used Bayes’ Theorem to answer our earlier
question of what happens to your credence in 6 when you learn that a fair
die roll has come up even. The hypothesis is 6, and the evidence is E (for
even). By Conditionalization and then Bayes’ Theorem,

cr2p6q “ cr1p6 |Eq “
cr1pE | 6q ¨ cr1p6q

cr1pEq
(4.5)

cr1p6q, your prior credence in 6, is 1{6, and cr1pEq, your prior credence in
E, is 1{2. The likelihood of E, cr1pE | 6q, is easy—it’s 1. So the numerator
is 1{6, the denominator is 1{2, and the posterior cr2p6q “ 1{3 as we saw
before.4

Let’s apply Bayes’ Theorem to a more interesting case:

1 in 1,000 people have a particular disease. You have a test for
the presence of the disease that is 90% accurate, in the following
sense: If you apply the test to a subject who has the disease it
will yield a positive result 90% of the time, and if you apply the
test to a subject who lacks the disease it will yield a negative
result 90% of the time.

You randomly select a person and apply the test. The test yields
a positive result. How confident should you be that this subject
actually has the disease?

Most people—including trained medical professionals!—answer this question
with a value around 80% or 90%. But if you set your credences by the
statistics given in the problem, the rationally-required degree of confidence
that the subject has the disease is less than 1%.

We’ll use Bayes’ Theorem to work that out. Let D represent the propo-
sition that the subject has the disease and P the proposition that when
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applied to the subject, the test yields a positive result. Here D is our hy-
pothesis, and P is the evidence acquired between t1 and t2. At t1 (before
applying the test) we take the subject to be representative of the population,
giving us priors for the hypothesis and the catchall:

cr1pDq “ 0.001 cr1p„Dq “ 0.999

The accuracy profile of the test gives us likelihoods for the hypothesis and
catchall:

cr1pP |Dq “ 0.9 cr1pP | „Dq “ 0.1

In words, if the subject has the disease it’s 90% probable the test will yield
a positive result, while if he lacks the disease there’s still a 10% chance we’ll
get a “false positive” indicating that he has it.

Now we’ll apply a version of Bayes’ Theorem from Section 3.1.3, in which
the Law of Total Probability has been used to expand the denominator:

cr2pDq “
cr1pP |Dq ¨ cr1pDq

cr1pP |Dq ¨ cr1pDq ` cr1pP | „Dq ¨ cr1p„Dq

“
0.9 ¨ 0.001

0.9 ¨ 0.001` 0.1 ¨ 0.999

« 0.009 “ 0.9%

(4.6)

So there’s the calculation. After learning of the positive test result, your
credence that the subject has the disease should be a little bit less than
1%. But even having seen this calculation, most people find it hard to be-
lieve. Why shouldn’t we be more confident that the subject has the disease?
Wasn’t the test 90% accurate?

Tversky and Kahneman (1974) suggested that in cases like this one,
people’s intuitive responses ignore the “base rate” of a phenomenon. The
base rate in our example is the prior credence that the subject has the
disease. In this case, that base rate is extremely low. But people tend to
forget about that fact and be overwhelmed by accuracy statistics (such as
likelihoods) concerning the test. This is known as the Base Rate Fallacy.

Why is the base rate so important? To illustrate, let’s suppose you
applied the test to 10,000 people. Using the base rate statistics, we would
expect about 10 of those people to have the disease. Since the test gives
a positive result for 90% of people who have the disease, we would expect
these 10 diseased people to yield about 9 positive results—so-called “true
positives”. Then there would be about 9,990 people lacking the disease.
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Since cripP | „Dq—the false positive rate—is 10%, we’d expect to get about
999 false positive results. Out of 1,008 positive results the test would yield,
only 9 of those subjects (or about 0.9%) would actually have the disease.
This particular disease is so rare—its base rate is so tiny—that even with
an accurate test we should expect the false positives to swamp the true
positives. So when a single individual takes the test and gets a positive
result, we should be much more confident that this is a false positive than
a true one.

Another way to see what’s going on is to consider the Bayes factor of
the evidence you receive in this case. The idea of the Bayes factor is to com-
pare your prior credence that the hypothesis is true with your prior credence
that it’s false, then make that comparison again after you’ve conditionalized
on the evidence. Using Conditionalization and the Ratio Formula, we can
derive

crjpHq

crjp„Hq
“

cripH |Eq

crip„H |Eq
“

cripHq

crip„Hq
¨

cripE |Hq

cripE | „Hq
(4.7)

That last fraction on the right—the ratio of the likelihood of the hypothesis
to the likelihood of the catchall—is the Bayes factor. It gives you the value
by which your prior ratio of hypothesis to catchall is multiplied to get the
posterior ratio. This is one way of measuring how much the evidence changes
your opinions about the hypothesis.

In our disease example, the Bayes factor is

cr1pP |Dq

cr1pP | „Dq
“

0.9

0.1
“ 9 (4.8)

At t1 your priors in D and „D have the ratio 1{999. The positive test has
a substantial influence on this ratio; as the Bayes factor reveals, evidence of
a positive test result multiplies the ratio by 9. Yet since the ratio was so
small initially, multiplying it by 9 only brings the posterior ratio to 9{999.
So even after seeing the test outcome, you should be much more confident
that the subject doesn’t have the disease than you are that he does.5

4.2 Evidence and Certainty

Combining Conditionalization with the probability axioms and Ratio For-
mula creates a Bayesian approach to evidence that many have found trou-
bling. Conditionalization works with a proposition E representing every-
thing the agent learns between two times. (If many propositions are learned,
E is their conjunction.) We also speak of E as the evidence the agent gains
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between those two times. Yet Conditionalization gives E properties that
epistemologists don’t typically attribute to evidence.

We’ve already seen that a piece of evidence E (as well as all of its con-
juncts, and anything else it entails) becomes certain once conditionalized
upon. When an agent learns E, the set of doxastically possible worlds she
entertains shrinks to a set of worlds that all make E true; on the Venn dia-
gram, what once was merely an E-circle within her rectangle of worlds now
becomes the entire rectangle. And as we saw in Section 4.1.1, this change is
permanent: as long as the agent keeps updating by Conditionalization, any
evidence she once learned remains certain and possible worlds inconsistent
with it continue to be ignored.

What realistic conception of evidence—and of learning—meets these re-
quirements? When I learn that my sister is coming over for Thanksgiving
dinner, I become highly confident in that proposition. But do I become
100% certain? Do I rule out all possible worlds in which she doesn’t show,
refusing to consider them ever after? To do so seems not only odd but
positively irrational, in violation of the

Regularity Principle: In a rational credence distribution, no logically
contingent proposition receives unconditional credence 0.

The Regularity Principle captures the common-sense idea that one’s evi-
dence is never so strong as to entirely rule out any logical possibility. (Recall
that a logically contingent proposition is neither a logical contradiction nor
a logical tautology.6) As damning evidence against a contingent proposition
mounts up, we can keep decreasing and decreasing our credence in it, but
our unconditional credence distribution should always remain regular—it
should assign each contingent proposition at least a tiny bit of confidence.

The Regularity Principle adds to the synchronic Bayesian rules we have
seen so far—it is not entailed by the probability axioms, the Ratio Formula,
or any combination of them. As our Contradiction result showed in Section
2.2.1, those rules do entail that all logical contradictions receive credence
0. But Regularity is the converse of Contradiction; instead of saying that
all contradictions receive credence 0, it entails that only contradictions do.
Similarly, Regularity (along with the probability axioms) entails the converse
of Normality: instead of saying that all tautologies receive credence 1, it
entails that only tautologies do. (The negation of a contingent proposition
is contingent; if we were to assign a contingent proposition credence 1 its
negation would receive credence 0, in violation of Regularity.) This captures
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the common-sense idea that one should never be absolutely certain of a
proposition that’s not logically true.7

Conditionalization conflicts with Regularity; the moment an agent condi-
tionalizes on contingent evidence, she assigns credence 1 to a non-tautology.
As we saw earlier, Conditionalization on contingent evidence rules out dox-
astic possibilities the agent had previously entertained; on the Venn dia-
gram, it narrows the set of worlds under consideration. Regularity, on the
other hand, fixes an agent’s doxastic possibility set as the full set of logi-
cal possibilities. While evidence might shift the agent’s credences around
among various possible worlds, an agent who satisfies Regularity will never
eliminate a possible world outright.

We might defend Conditionalization by claiming that whenever agents
receive contingent evidence, it is of a highly specific kind, and Regularity is
false for this kind of evidence. Perhaps I don’t actually learn that my sister
is coming over for Thanksgiving—I learn that she told me she’s coming;
or that it seemed to me that she said that; or that I had a phenomenal
experience as of. . . . Surely I can be certain what phenomenal experiences
I’ve had, or at least what experiences I’m having right now. When in the
midst of having a particular phenomenal experience, can’t I entirely rule
out the logical possibility that I am having a different experience instead?
Suffice it to say that the existence of such indubitable phenomenal evidence
is a highly fraught topic, debated throughout the history of epistemology,
that I will not attempt to adjudicate here.

There are other ways to make sense of Conditionalization’s conception of
evidence. Levi (1980) took credence-1 propositions to represent “standards
of serious possibility”:

When witnessing the toss of a coin, [an agent] will normally
envisage as possibly true the hypothesis that the coin will land
heads up and that it will land tails up. He may also envisage
other possibilities—e.g., its landing on its edge. However, if he
takes for granted even the crudest folklore of modern physics,
he will rule out as impossible the coin’s moving upward to outer
space in the direction of Alpha Centauri. He will also rule out
the hypothesis that the Earth will explode. (p. 3)

Yet Levi was careful to formalize standards of serious possibility so that
they could change—growing either stronger or weaker—for a given agent
over time.

Alternatively, we could represent agents as ruling out contingent possi-
bilities only relative to a particular inquiry. Consider a scientist who has



94 CHAPTER 4. UPDATING BY CONDITIONALIZATION

just received a batch of experimental data and wants to weigh its import for
a set of hypotheses. There are always outlandish possibilities to consider:
the data might have been faked; the laws of physics might have changed
a moment ago; she might be a brain in a vat. But to focus on the prob-
lem at hand, she might conditionalize on the data and see where that takes
her credences in the hypotheses. Updating by Conditionalization might fail
as a big-picture, permanent strategy, but nevertheless could be useful in
carefully-delimited contexts. (I mentioned this possibility in Section 2.4.1.)

Perhaps these interpretations of evidence conditionalized-upon remain
unsatisfying. We will return to this problem in Chapter 5, considering an
alternative updating rule (Jeffrey Conditionalization) that allows agents to
redistribute their credences over contingent possibilities without eliminating
any of them entirely. For the rest of this chapter we will simply assume
that Conditionalization on some kind of contingent evidence is a rational
updating rule, so as to draw out further features of the rule.

4.2.1 Probabilities are weird! The Monty Hall Problem

Classical entailment is monotonic in the following sense: If a piece of evi-
dence E you have received entails that H, any augmentation of that evidence
(any conjunction that includes E as a conjunct) will continue to entail H as
well. Probabilistic relations, however, can be nonmonotonic: H might be
highly probable given E, but improbable given E &E1. For this reason, it’s
important when recommending rational credences for an agent to consider
all of the evidence she possesses, or has acquired during a particular learning
experience. Carnap (1950) called this the Principle of Total Evidence.

We sometimes violate the Principle of Total Evidence by failing to note
the manner in which an agent gained particular information.8 If the agent
is aware of the mechanism by which a piece of information was received, it
can be important to recognize facts about that mechanism as a component
of her total evidence (along with the information itself). In Eddington’s
(1939) classic example, you draw a sample of fish from a lake, and all the
fish are longer than six inches. Normally, updating on this information would
increase your confidence that every fish in the lake is at least that long. But
if you know the net used to draw the sample has big holes through which
shorter fish fall, the confidence increase is unwarranted. Here it’s important
to conditionalize not only on the lengths of the fish but also on how they
were caught.

The process by which information is obtained is also crucial to a famously
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counterintuitive probability puzzle, the Monty Hall Problem (Selvin 1975):

In one of the games played on Let’s Make a Deal, a prize is
randomly hidden behind one of three doors. The contestant
selects one door, then the host (Monty Hall) opens one of the
doors the contestant didn’t pick. Monty always opens a door that
doesn’t have the prize behind it. (If both the unselected doors are
empty, he randomly chooses which one to open.) After he opens
an empty door, Monty asks the contestant if she wants what’s
behind the door she initially selected, or what’s behind the other
remaining closed door. Assuming she understands the details of
Monty’s procedure, how confident should the contestant be that
the door she initially selected contains the prize?

Most people’s initial reaction is to answer 1{2: the contestant originally
spread her credence equally among the three doors; one of them has been
revealed to be empty; so she should be equally confident that the prize is
behind each of the remaining two. This analysis can be backed up by the
following stochastic truth-table:

cr1 cr2
Prize behind door A 1{3 1{2

Prize behind door B 1{3 0

Prize behind door C 1{3 1{2

Here we’ve used the obvious partition of three locations where the prize
might be. Without loss of generality, I’ve imagined that the contestant
initially selects door A and Monty then opens door B. At time t1—after the
contestant has selected door A but before Monty has opened anything—she
is equally confident that the prize is hidden behind each of the three doors.
When Monty opens door B at t2, the contestant should conditionalize on
the prize’s not being behind that door. It looks like this yields the cr2
distribution listed above, which matches most people’s intuitions.

Yet the contestant’s total evidence at t2 includes not only the fact that
the prize isn’t behind door B, but also the fact that Monty opened that
one. These two propositions aren’t equivalent among the agent’s doxasti-
cally possible worlds; there are possible worlds consistent with what the
contestant knows about Monty’s procedure in which door B is empty yet
Monty opens door C. That door B was not only empty but was revealed to
be so is not expressible in the partition used above. So we need a richer
partition, containing information both about the location of the prize and
about what Monty does:
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cr1 cr2
Prize behind door A & Monty reveals B 1{6 1{3

Prize behind door A & Monty reveals C 1{6 0

Prize behind door B & Monty reveals C 1{3 0

Prize behind door C & Monty reveals B 1{3 2{3

Given what the agent knows of Monty’s procedure, these four propositions
partition her doxastic possibilities at t1. At that time she doesn’t know
where the prize is, but she has initially selected door A (and Monty hasn’t
opened anything yet). If the prize is indeed behind door A, Monty randomly
chooses whether to open B or C. So the contestant divides her 1{3 credence
that the prize is behind door A equally between those two options. If the
prize is behind door B, Monty is forbidden to open that door as well as the
door the contestant selected, so Monty must open C. Similarly, if the prize
is behind door C, Monty must open B.

At t2 Monty has opened door B, so the contestant sets her credence in
the second and third partition elements to 0, then multiplies the remaining
values by a constant so that they sum to 1. This maintains the ratio between
her credences on the first and fourth lines; initially she was twice as confident
of the fourth as the first, so she remains twice as confident after the update.
She is now 2{3 confident that the prize isn’t behind the door she initially
selected, and 1{3 confident that her initial selection was correct. If she wants
the prize, the contestant should switch doors.

This is the correct analysis. If you find that surprising, the following
explanation may help: When the contestant originally selected her door,
she was 1{3 confident that the prize was behind it and 2{3 confident that
the prize was somewhere else. If her initial pick was correct, it makes sense
to stick with that pick after Monty opens a door. But if her initial selection
was wrong, she should switch to the other remaining closed door, because
it must contain the prize. So there’s a 1{3 chance that sticking is the best
strategy, and a 2{3 chance that switching will earn her the prize. Clearly
switching is a better idea.

When I first heard the Monty Hall Problem, even that explanation didn’t
convince me. I only became convinced after I simulated the scenario over
and over and found that sticking made me miss the prize roughly 2 out of
3 times. If you’re not convinced, try writing a quick computer program or
finding a friend with a free afternoon to act as Monty Hall for you a few
hundred times. You’ll eventually find that the stochastic truth-table taking
total evidence into account provides the correct analysis.
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4.3 Hypothetical Priors and Evidential Standards

Suppose we are talking to an agent who has always been perfectly rational
with respect to the Bayesian rules—she has always assigned credence distri-
butions satisfying the probability axioms and Ratio Formula, and she has
always updated those distributions by Conditionalization. At this advanced
stage of her life, the credences she assigns will have been affected a great
deal by the empirical evidence she’s gained over time. But will there have
been any other influences on her credences? Might another rational agent,
receiving the same course of evidence over her lifespan, have assigned differ-
ent credences in response? What determines how an agent responds to her
evidence?

We will return to many of these questions in our discussion of Subjective
vs. Objective Bayesianism in Chapter 5. At this point I want to develop a
mathematical tool that helps Bayesians distinguish the credal influence of
an agent’s evidence from that of the evidential standards by which she
responds to her evidence. We begin with the following theorem:

Hypothetical Priors Theorem: Given any finite series of credence dis-
tributions cr1, cr2, . . . , crn satisfying the probability axioms and
Ratio Formula, let Ei be a conjunction of the agent’s total evi-
dence at ti. If the cr update by Conditionalization, then there
exists a regular probability distribution crH such that for all
1 ď i ď n,

crip¨q “ crHp¨ |Eiq

I will refer to the distribution crH whose existence is guaranteed by this
theorem as a hypothetical prior distribution. (Other authors call it an
“ur-prior”.)

I want to first illustrate what the Hypothetical Priors Theorem says
mathematically, then explain how Bayesians interpret its significance. Sup-
pose that at t1 I show you a 6-sided die and tell you it has just been rolled.
Moreover, I tell you that I took this die from the craps table at a well-known
Las Vegas Casino. Five minutes later, at t2, I tell you that the die roll came
up even. Finally, at t3, I tell you that it also came up prime. Let’s say
that in response to this evidence, you assign the credences expressed by this
stochastic truth-table at those three times:



98 CHAPTER 4. UPDATING BY CONDITIONALIZATION

C P E cr1 cr2 cr3
T T T 1{6 1{3 1

T T F 1{3 0 0

T F T 1{3 2{3 0

T F F 1{6 0 0

F T T 0 0 0

F T F 0 0 0

F F T 0 0 0

F F F 0 0 0

Here P stands for the roll’s coming up prime, E stands for even, and C
represents the die’s origin in a reputed casino. At t1 your total evidence
(relevant to the roll outcome) is C; we’ll call this E1. At t2 your total
evidence E2 is C &E. E3 is C &E &P . Since C is part of your evidence at
all times reflected in this table, you assign 0 credence throughout the table
to any state-description on which C is false.

Since your credence distributions c1 through c3 are probabilistic, and
update in the manner dictated by Conditionalization, the Hypothetical Pri-
ors Theorem guarantees the existence of at least one hypothetical prior crH
standing in a special relation to those distributions. I’ve added a column to
the stochastic truth-table below representing one such crH -distribution:

C P E crH cr1 cr2 cr3
T T T 1{12 1{6 1{3 1

T T F 1{6 1{3 0 0

T F T 1{6 1{3 2{3 0

T F F 1{12 1{6 0 0

F T T 1{12 0 0 0

F T F 1{6 0 0 0

F F T 1{6 0 0 0

F F F 1{12 0 0 0

As the Hypothetical Priors Theorem requires, crH is regular—it doesn’t
assign credence 0 to any contingent propositions—and it satisfies the prob-
ability axioms. It also stands in the relation to each of cr1, cr2, and cr3 that
each of those distributions can be obtained from crH by conditionalizing it
on your total evidence at the relevant time. To take one example, consider
cr2. E2 is C&E. To conditionalize crH on C&E, we write a zero on each line
whose state-description is inconsistent with C &E. That puts zeroes on the
second and fourth through eighth lines of the truth-table. We then multiply
the crH values on the first and third lines of the table by a constant (in this
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Figure 4.2: An initial credence distribution?

crH . . . cri crj crk
Ei

Ej Ek

case, 4) so that the results sum to 1. This yields the cr2 distribution above.
With a bit of work you can verify that cr1 results from conditionalizing crH
on E1, and cr3 is the result on conditionalizing crH on E3.

So that’s how the math works. But what does the hypothetical prior crH
represent? Many Bayesians interpret the hypothetical prior as an initial
credence distribution. The idea is that an agent begins her rational life
possessing no contingent evidence; she therefore has no contingent certainties
and adopts a regular credence function. This is the moment in her doxastic
life represented by her initial credence distribution crH .9 She then learns
pieces of contingent information over the course of her life, to which she
responds by conditionalizing. If we want to know what credence distribution
she will assign at some later time tk, we could start with crH , conditionalize
on the first evidence piece of evidence she gains, then conditionalize on the
second, and so on until we get to cri, conditionalize it to get crj , and finally
conditionalize our way to crk. But since Conditionalization is cumulative
(Section 4.1.1), there’s a much more direct way to proceed. We can generate
crk by simply conditionalizing crH on Ek, the agent’s total evidence at tk.
This explains why crH (construed as an initial credence function) stands in
the relation to the various cri, crj , crk, etc. described in the Hypothetical
Priors Theorem.10

Figure 4.2 depicts the initial credence function interpretation of crH .
Each distribution in the series is generated from the previous one by condi-
tionalizing (solid arrows), but we can also derive each distribution directly
(dashed arrows) by conditionalizing crH on the agent’s total evidence at the
relevant time.

Yet ultimately this interpretation must be a myth. Given the Hypothet-
ical Priors Theorem, any agent who obeys the core Bayesian rules can be
furnished with a hypothetical prior. But must any such agent have had some
point in her life at which she lacked all contingent information? And even
if there was such a point in our intellectual prehistory, is it plausible that
at such a time we assigned degrees of belief satisfying the probability calcu-
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lus? David Lewis used to refer to such highly intelligent, blank creatures in
conversation as “superbabies”; sadly, I doubt the world has ever seen their
like.11

I prefer an alternate interpretation of hypothetical priors. To understand
that interpretation, start with the possibility of having two agents, both of
whom satisfy all the core Bayesian rules, both of whom have the same total
evidence at every time in their conditionalizing sequence, and yet who assign
different credences to a wide variety of propositions. The core Bayesian rules
do nothing to rule this possibility out—they do not force an agent’s credences
to supervene on her evidence. To give a simple example, suppose you have
a friend who is suspicious of Vegas casinos and think they all weight their
dice to produce extra snake-eyes (double 1s). At t1, when you and he have
both been told proposition C about the casino origin of the die that was
rolled, you assign 1{2 credence that it came up even. But he will assign
a lower credence to E, because he will assume the die is weighted towards
the number 1. So despite having the same total evidence as you at t1, he
will assign a different cr1 distribution than the ones described in our tables
above. Yet it’s perfectly possible that he will still satisfy the probability
axioms and Ratio Formula, and as he gains the same evidence as you at t2
and t3 he will still be able to update by Conditionalization.

When we go to construct a hypothetical prior for your friend, we will
find that it contains different values than yours. Your hypothetical prior
assigns

crHpE |Cq “ 1{2 (4.9)

This is why, when you conditionalize your crH on C (your total evidence
at t1) to obtain cr1, you wind up with a cr1pEq value of 1{2. Yet since
your friend has a different value for cr1pEq, while having the same total
evidence as you at t1, he must have a different crHpE |Cq value than you.
Moreover, your differing crH values cannot be the result of your responding
to different evidence, since by stipulation crH is regular; it’s a distribution
without contingent certainties, and therefore a distribution that does not
contain any evidence to which it might respond.

In the example at hand this probably seems preposterous. Your friend
probably responds differently than you to news that the die came from Vegas
because he has some evidence you don’t about the way Vegas casinos run
their games. (Why, after all, does he focus on snake-eyes?) Perhaps he
lacks any extra evidence that can be expressed in our toy C{P {E language,
but his total evidence is surely different from yours, and that must be what
drives the difference in your credences.
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But we can extend the example to a much more general case. Imagine
two agents who have literally identical total evidence over the course of
their entire lives—perhaps two twins raised together at all times. Perhaps
one of them has an inherently more trusting character than the other, and so
(despite having been exposed to all the same stories of Vegas malfeasance)
is much more willing to treat casino dice as fair than her sister. There
is nothing in our core Bayesian norms that rules this out. And even if
it’s impossible to have two distinct agents who literally share all the same
evidence, the example is merely meant to be illustrative. We could always
focus on a particular agent and the total evidence she (alone) possesses, then
point out that she could have assigned different credences than she actually
does without violating the core Bayesian rules.12

Given this fact, it can be useful to isolate two independent aspects of
an agent’s credal history. Presented with a series of credence distributions,
each of which satisfies the probability axioms and Ratio Formula, and each
of which is generated from the last by Conditionalization, we can first deter-
mine the total evidence possessed by the agent at each time. To do so, we
simply look at the contingent propositions of which she is certain (to which
she assigns unconditional credence 1) at each time, and construct their con-
junction.13 But second, the Hypothetical Priors Theorem guarantees that
we can abstract a hypothetical prior from this agent’s series of distributions
as well. The hypothetical prior represents whatever non-evidential influences
combined with the agent’s evidence to generate her credences at each time
in the series. By plugging the agent’s total evidence at a given time into this
hypothetical prior, we can re-create her credence distribution at that time.
And if we imagine a counterfactual case in which her total evidence remains
the same at a given time yet she assigns different credences to particular
propositions, any hypothetical prior consistent with her attitudes in that
counterfactual situation must conflict with the one we’ve constructed for
her actual credences. (For the same reason that your suspicious friend’s crH
values must be different from your own for him to have a different cr1.)

14

I refer to the non-evidential influences represented by an agent’s hypo-
thetical prior crH as her evidential standards. Some people are more
skeptical than others, and so require more evidence to become confident in
particular propositions (that Americans actually landed on the moon, that
a lone gunman shot JFK, that a material world exists). Some people are
interested in avoiding high confidence in falsehoods, while others are more
interested in obtaining high confidence in truths. Some people are more in-
clined to believe elegant scientific theories, while others incline towards the
theory that hews closest to the data. All these differences may be reflected
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Figure 4.3: Hypothetical priors as evidential standards

cri crj crk crl . . .

crH

Ei Ej Ek El

in an agent’s evidential standards, which combine with the evidence they
receive to furnish their views about the world.

An agent’s hypothetical prior function crH is regular; it contains no con-
tingent certainties and therefore no evidence. That means it doesn’t reflect
changes in an agent’s evidence as she learns about the world and updates
by Conditionalization. The agent’s hypothetical prior remains constant as
different batches of total evidence are plugged into it over time. Instead of
being the initial member of an agent’s Conditionalization series, or identi-
cal to any credence distribution she actually assigns at a particular time,
the hypothetical prior “hovers above” the agent’s ongoing series of distribu-
tions, as depicted in Figure 4.3. Again, the solid arrows represent ongoing
conditionalizations, while the dashed arrows represent the possibility of gen-
erating an agent’s distribution at a given time by conditionalizing crH on
her total evidence at that time.

But shouldn’t an agent’s evidential standards change over time, as she
gains information? Here it’s important to distinguish ultimate from ongoing
evidential standards. Your ultimate evidential standards, represented in
your hypothetical priors, determine attitudes when combined with bodies
of total evidence. Your ongoing evidential standards at a particular time
determine attitudes in combination with further pieces of evidence you may
receive going forward. As you go through life you gain evidence that not only
changes your attitudes towards particular propositions, but also changes the
significance you attach to further pieces of evidence that might arrive. Yet
we can represent all these changes as proceeding from an ultimate set of
standards authorizing each individual stance in light of the total evidence
possessed at the relevant time.

An analogy may help here. Suppose you’re playing five-card stud, a
poker game in which each player receives one card at a time and four-of-a-
kind is an excellent hand. Before you receive any cards, learning that your
last card will be the three of hearts would leave you with a low credence
that you will win the hand. Now suppose your first card dealt is the Jack
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of spades. At this point learning that your last card will be the three of
hearts would leave you with an even worse attitude toward your prospects.
But when your second, third, and fourth cards turn out to be the three of
spades, the three of diamonds, and the three of clubs, your assessment of
the three of hearts changes. Now learning that your last card will be the
three of hearts would give you a very high credence in victory.

As the game progresses and your evidence about your hand increases,
you change your views on whether the three of hearts should make you con-
fident in a win. These evolving views are like ongoing evidential standards.
Yet underlying those developing standards lie a stable set of views about
what cards the deck contains, the probabilities of various five-card hands
if one deals from scratch, and which hands are stronger or weaker in the
game. Instead of walking you through the deal one card at a time, I could
have dropped you into a given point in the middle of the game and told
you all the cards that had been seen. Combining this total evidence with
your underlying knowledge of the game would generate a particular degree
of confidence that you’re going to win. Though this underlying knowledge is
not strictly speaking a hypothetical prior (since it contains contingent infor-
mation about decks, five-card stud, etc.), it plays a similar role to ultimate
evidential standards in the context of this game.

Evidence and evidential standards come up in a variety of contexts in
epistemology, many having nothing to do with degrees of belief. Bayesian
epistemology provides a particularly elegant formal apparatus for isolat-
ing each of these elements, by way of contingent credence-1 propositions
and hypothetical priors. Once we have the ability to separate an agent’s
evidence from her evidential standards, an obvious question arises: What
rational constraints are there on evidential standards? We’ve already stipu-
lated that hypothetical priors must obey the probability axioms and Ratio
Formula.15 But are there more stringent requirements than that? Some
probabilistic hypothetical priors will be anti-inductive, or will recommend
highly skeptical attitudes in the face of everyday bundles of total evidence.
Can we rule out such hypothetical priors as rationally impermissible? And
once we start adding constraints beyond the core Bayesian rules, how many
distinct hypothetical priors will wind up rationally allowed? This will be our
first topic in Chapter 5, as we distinguish between Objective and Subjective
Bayesianism.
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4.4 Exercises

Unless otherwise noted, you should assume when completing these exercises
that the cr-distributions under discussion satisfy the probability axioms and
Ratio Formula. You may also assume that whenever a conditional cr expres-
sion occurs or a proposition is conditionalized upon, the needed proposition
has nonzero unconditional credence so that conditional credences are well-
defined.

Problem 4.1. Galileo intends to determine whether gravitational acceler-
ation is independent of mass by dropping two cannonballs of differing mass
off the Leaning Tower of Pisa. Conditional on the quantities’ being indepen-
dent, he is 95% confident that the cannonballs will land within 0.1 seconds
of each other. (The experiment isn’t perfect—one ball might hit a bird.)
Conditional on the quantities’ being dependent, he is 80% confident that
the balls won’t land within 0.1 seconds of each other. (There’s some chance
that although mass affects acceleration, it doesn’t have much of an effect.)˚

(a) Before performing the experiment, Galileo is 30% confident that mass
and gravitational acceleration are independent. How confident is he that
the cannonballs will land within 0.1 seconds of each other?

(b) After Galileo conditionalizes on the evidence that the cannonballs landed
within 0.1 seconds of each other, how confident is he in each hypothesis?

Problem 4.2. Prove that Conditionalization retains certainties. In other
words, prove that if cripHq “ 1 and crj is generated from cri by Condition-
alization, then crjpHq “ 1 as well.

Problem 4.3. Prove that Conditionalization is cumulative. That is, prove
that for any cri, crj , and crk, conditions 1 and 2 below entail condition 3.

1. For any proposition X in L, crjpXq “ cripX |Eq.

2. For any proposition Y in L, crkpY q “ crjpY |E
1q.

3. For any proposition Z in L, crkpZq “ cripZ |E & E1q.

Problem 4.4. (a) Provide an example in which an agent conditionalizes
on new evidence, yet her credence in a proposition compatible with the
evidence decreases. That is, provide an example in which H and E are
consistent, yet cr2pHq ă cr1pHq when E is learned between t1 and t2.

˚This is a version of a problem from Julia Staffel.
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(b) Prove that when an agent conditionalizes on new evidence, her credence
in a proposition that entails the evidence cannot decrease. That is,
when H ( E, it must be the case that cr2pHq ě cr1pHq when E is
learned between t1 and t2.

(c) Prove that as long as cr1pHq and cr1pEq are both nonextreme, condi-
tionalizing on E increases the agent’s credence in H when H ( E.:

Problem 4.5. Reread the details of the Base Rate Fallacy example in Sec-
tion 4.1.2. After you apply the diagnostic test once and it yields a positive
result, your credence that the subject has the disease should be about 0.009.

(a) Suppose you apply the test a second time to the same subject, and it
yields a positive result once more. How confident should you now be
that the subject has the disease? (Assume that D and „D each screen
off the results of the first test from the results of the second.)

(b) How many consecutive tests (each independent of the results of prior
tests conditional on both D and „D) would have to yield positive results
before your confidence that the subject has the disease exceeded 50%?

(c) Does this shed any light on why patients diagnosed with rare diseases
are often advised to seek a second opinion? Explain.

Problem 4.6. Your friend Jones has a gambling problem. His problem is
so bad that he gambles on whether to gamble. Every time he goes to the
track, he flips a fair coin to determine whether to bet that day. If it comes
up heads he bets on his favorite horse, Speedy. If it comes up tails he doesn’t
bet at all.

On your way to the track today, you were 1{6 confident that out of the
six horses running, Speedy would win. You were 1{2 confident that Jones’s
coin would come up heads. And you considered the outcome of the horse
race independent of the outcome of the coin flip. But then you saw Jones
leaving the track with a smile on his face. Clearly either Jones bet on Speedy
and won, or Jones didn’t bet and Speedy didn’t win.

(a) Using a language with the atomic propositions H (for heads on the coin)
and S (for a Speedy win), express the information you learn when you
see Jones smiling.

:This problem was inspired by a problem of Sarah Moss’.
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(b) After updating on this information by conditionalizing, how confident
are you that Speedy won? How confident are you that the coin came up
heads?

(c) Explain why one of the unconditional credences you calculated in part
(b) differs from its prior value and the other one doesn’t. Be sure to
include an explanation of why that unconditional credence was the one
that changed out of the two. (“Because that’s what the math says” is
not an adequate explanation—we want to know why the mathematical
outcome makes sense.)

Problem 4.7. At t1, t2, and t3, Jane assigns credences over the language L
constructed from atomic propositions P and Q. Jane’s distributions satisfy
constraints 1 through 6:

1. At t1, Jane is certain of Q Ą P , anything that proposition entails, and
nothing else.

2. Between t1 and t2 Jane learns P and nothing else. She updates by
conditionalizing between those two times.

3. cr1pQ |P q “ 2{3.

4. cr3pQ | „P q “ 1{2.

5. cr3pP Ą Qq “ cr2pP Ą Qq.

6. At t3, Jane is certain of „pP & Qq, anything that proposition entails,
and nothing else.

(a) Completely specify Jane’s credence distributions at t2 and t3.

(b) Create a hypothetical prior for Jane. In other words, specify a regular
probabilistic distribution crH over L such that cr1 can be generated
from crH by conditionalizing on Jane’s set of certainties at t1; cr2 is crH
conditionalized on Jane’s certainties at t2; and cr3 is crH conditionalized
on Jane’s t3 certainties.

(c) Does Jane update by Conditionalization between t2 and t3? Explain
how you know.

(d) The Hypothetical Priors Theorem says that if an agent always updates
by conditionalizing, then her credences can be represented by a hypo-
thetical prior distribution. Is the converse of this theorem true?
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Problem 4.8. Suppose you have a finite partition tB1, B2, . . . Bnu. Suppose
also that between t1 and t2 you conditionalize on evidence equivalent to a
disjunction of some of the Bs. Prove that for any A in L and any Bi such
that cr2pBiq ą 0,

cr2pA |Biq “ cr1pA |Biq

Problem 4.9. Do you think only one set of evidential standards is rationally
permissible? Put another way: If two agents’ series of credence distributions
cannot be represented by the same hypothetical prior distribution, must at
least one of them have assigned irrational credences at some point?

4.5 Further reading

Introductions and Overviews

Ian Hacking (2001). An Introduction to Probability and Inductive
Logic. Cambridge: Cambridge University Press

Chapter 15 works through many excellent examples of applying Bayes’ The-
orem to manage complex updates.

Classic Texts

Rudolf Carnap (1950). Logical Foundations of Probability. Chicago:
University of Chicago Press

Section 45B of Chapter IV contains Carnap’s discussion of the Principle of
Total Evidence.

Extended Discussion

Paul Teller (1973). Conditionalization and Observation. Syn-
these 26, pp. 218–258

Offers a number of arguments for the Conditionalization updating norm.
(We’ll discuss the Dutch Book argument for Conditionalization that Teller
provides in Chapter 9.)

Isaac Levi (1980). The Enterprise of Knowledge. Boston: The
MIT Press

Though Levi’s notation and terminology are somewhat different from mine
(my “evidential standards” are his “confirmational commitments”), Chap-
ter 4 thoroughly works through the mathematics of hypothetical priors.
Levi also discusses various historically-important Bayesians’ positions on
how many distinct hypothetical priors are rationally permissible.
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Notes

1Remember that 1 is not a prime number, while 2 is!
2A bit of reflection on Equation (4.2) will reveal that the constant we multiply by

in the second step of our stochastic truth-table updating process—the normalization
factor—will always be the reciprocal of the agent’s earlier unconditional credence in the
evidence. In other words, the second step divides all nonzero state-description credences
by cripEq.

3We can also now see an alternate explanation for steps (3.40) and (3.42) of Lewis’s
triviality proof from Section 3.3. The proposal assessed there is that for some conditional
Ñ, the agent’s conditional credence crpZ |Y q for any Y and Z in L equals her unconditional
credence in Y Ñ Z. Whatever motivates that proposal, we should want the proposal to
remain true even after the agent learns some information X. If the relevant values are
going to match after conditionalization on X, it must be true before conditionalization
that crpY Ñ Z |Xq “ crpZ |Y & Xq, which is just Equation (3.48).

4For reasons we are now in a position to understand, the term “posterior” is sometimes
used ambiguously in the Bayesian literature. I have defined “posterior” as an agent’s
credence in the hypothesis given the evidence—crpH |Eq. If the agent updates by con-
ditionalizing on E, this will equal her credence in the hypothesis after the update. The
terms “prior” and “posterior” come from the fact that on an orthodox Bayesian position,
those quantities pick out the agent’s unconditional credences in the hypothesis before and
after the update. But unorthodox Bayesians who prefer an alternative updating rule to
Conditionalization nevertheless sometimes refer to an agent’s post-update credence in a
hypothesis as her “posterior”. As I’ve defined the term, this is strictly speaking incorrect.

5Someone involved in neuroscience recently told me that when a prisoner in the Amer-
ican penal system comes up for parole, a particular kind of brain scan can predict with
greater than 90% accuracy whether that prisoner will, if released, be sent back to jail
within a specified period of time. He suggested that we use this brain scan in place of
traditional parole board hearings, whose predictive accuracy is much lower. I asked why
we don’t just apply the brain scan to everyone in American society, rather than wait to
see if a person commits a crime worth sending them to jail. He replied that the base
rates make this impractical: While the recidivism rate among prisoners is fairly high, the
percentage of ordinary Americans committing crimes is low, so the scan would generate
far too many false positives if used on the general population.

6In Section 2.4.1 I mentioned that Bayesians often work with an agent’s set of doxas-
tically possible worlds instead of the full set of logically possible worlds, understanding
“mutually exclusive” and “tautology” in the Kolmogorov axioms in terms of the restricted
doxastic set. The Regularity Principle concerns the full set of logically possible worlds—it
forbids assigning credence 0 to any proposition that is true in at least one of them. So for
the rest of this section, references to “contingent propositions”, “tautologies”, etc. should
be read against that full logical set of possibilities.

7Throughout this section I identify credence 1 with absolute certainty in a proposition
and credence 0 with ruling that proposition out. This becomes more complicated when
we consider events with infinitely many possible outcomes; we’ll consider the relevant
complications in Chapter 5.

8Consider a person who thinks the refrigerator light is always on, because it’s on
whenever she opens the refrigerator to look.

9Normality makes every probabilistic credence function—even crH—assign uncondi-
tional credence 1 to tautologies. Depending on how one thinks of evidence, this might



NOTES 109

mean that all probabilistic credence functions contain some form of tautological evidence.
In what follows we will be interested only in agents’ acquisition and response to contingent
evidence; for ease of locution I will often leave the “contingent” implied.

10I have selected a capital “H” for the subscript of the hypothetical prior distribution
crH so it is not confused with distribution crh occurring later in the Conditionalization
series (presumably just after crg and just before cri).

11I learned of Lewis’s “superbaby” talk from Alan Hájek. Susan Vineberg suggested to
me that Lewis’s inspiration for the term may have been I.J. Good’s (1968) discussion of
“an infinitely intelligent newborn baby having built-in neural circuits enabling him to deal
with formal logic, English syntax, and subjective probability”—to which we shall return
in Chapter 6.

12On some (but certainly not all) mentalist views of evidence, the credences one assigns
count as part of one’s evidence. Thus any change in an agent’s credences counts as a
change in her evidence, and we cannot create a counterfactual that holds an agent’s total
evidence fixed while varying her credences. I think that even on a view of evidence like
that it would be worthwhile to distinguish evidence from evidential standards, perhaps
by focusing on the evidence relevant to a particular proposition and suggesting that one’s
credence in that proposition isn’t relevant evidence. But the distinction would certainly
be more difficult to work out.

13Strictly speaking, if a probabilistic agent is certain of one contingent proposition
at a given time she will be certain of infinitely many, since any contingent proposition
entails infinitely many contingent propositions. (Think, for instance, of the infinitely-many
disjunctions one can form by disjoining the contingent proposition with itself finitely-many
times.) But as long as we are using a language with finitely-many atomic propositions, one
will always be able to construct a finite proposition that is equivalent to the conjunction
of all the contingent propositions of which the agent is certain. One strategy is to use the
negation of the disjunction of all the state-descriptions to which the agent assigns credence
0.

14The Hypothetical Priors Theorem says that if an agent always updates by Condition-
alization, there will be at least one crH distribution consistent with her series of credence
distributions. While future chapters will suggest rational constraints on hypothetical pri-
ors beyond the probability axioms and Ratio Formula, if we demand only that hypothetical
priors satisfy those norms then for any realistic series of agent credence distributions (in
particular, any series whose first element contains at least some contingent certainties),
there will be many crH distributions consistent with that series. For instance, in the ear-
lier table with propositions C, P , and E, we could’ve filled in the bottom four lines of crH
with any nonnegative values summing to 1{2 and still made the function consistent with
cr1, cr2, and cr3 in the relevant fashion. (I filled in those four lines as if, should you have
learned that the die didn’t come from a casino, you nevertheless would have assumed it
to be fair.)

Any hypothetical prior that is consistent with all the distributions in a condition-
alizing series will generate the same credences should that series be further extended
by Conditionalization, so the differences among such hypothetical priors need not make
much difference. The crucial point is that if two agents assign different credences at a
given time despite sharing the same total evidence, there will be no hypothetical prior
that is consistent with the entirety of both their distribution series.

15The Hypothetical Priors Theorem requires hypothetical priors to be regular, and
you might think that’s because we have endorsed Regularity as a rational constraint on
evidential standards. Yet hypothetical priors are required to be regular not because of
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any allegiance to the Regularity norm, but instead because we need to cleanse them of
contingent evidence for them to represent truly non-evidential influences on an agent’s
attitudes. Remember, the Hypothetical Priors Theorem applies only to an agent who
updates by Conditionalization, and Conditionalization is in tension with the Regularity
Principle.


