Chapter 3

Conditional Credences

Chapter 2’s discussion was confined to unconditional credence, an agent’s
outright degree of confidence that a particular proposition is true. This
chapter takes up conditional credence, an agent’s credence that one propo-
sition is true on the supposition that another is.

The main focus of this chapter is our fourth core Bayesian rule: the
Ratio Formula. This rational constraint on conditional credences has a
number of important consequences, including Bayes’ Theorem (which gives
Bayesianism its name).

Conditional credences are also central to the way Bayesians understand
evidential relevance. 1 will define relevance as positive correlation, then
explain how this notion has been used to investigate causal relations through
the concept of screening off.

Having achieved a deeper understanding of the mathematics of condi-
tional credences, I return at the end of the chapter to what exactly a condi-
tional credence is. In particular, I discuss an argument by David Lewis that
a conditional credence can’t be understood as an unconditional credence in
a conditional.

3.1 Conditional credences and the Ratio Formula

Andy and Bob know that two events will occur simultaneously in separate
rooms: a fair coin will be flipped, and a clairvoyant will predict how it will
land. Let H represent the proposition that the coin comes up heads, and
C represent the proposition that the clairvoyant predicts heads. Suppose
Andy and Bob each assign an unconditional credence of 1/2 to H and an
unconditional credence of 1/2 to C.

51



52 CHAPTER 3. CONDITIONAL CREDENCES

Although Andy and Bob assign the same unconditional credences as
each other to H and C, they still might take these propositions to be related
in different ways. We could tease tease out those differences by saying to
each agent, “I have no idea how the coin is going to come up or what
the clairvoyant is going to say. But suppose for a moment the clairvoyant
predicts heads. On this supposition, how confident are you that the coin
will come up heads?” If Andy says 1/2 and Bob says 99/100, that’s a good
indication that Bob has more faith in the mystical than Andy.

The quoted question in the previous paragraph elicits Andy and Bob’s
conditional credences, as opposed to the unconditional credences discussed
in Chapter 2. An unconditional credence is a degree of belief assigned to a
single proposition, indicating how confident the agent is that that proposi-
tion is true. A conditional credence is a degree of belief assigned to an
ordered pair of propositions, indicating how confident the agent is that the
first proposition is true on the supposition that the second is. We symbolize
conditional credences as follows:

c(H|C) =1/2 (3.1)

This equation says that a particular agent (in this case, Andy) has a 1/2
credence that the coin comes up heads conditional on the supposition that
the clairvoyant predicts heads. The vertical bar indicates a conditional cre-
dence; to the right of the bar is the proposition supposed; to the left of the
bar is the proposition evaluated in light of that supposition. The proposition
to the right of the bar is sometimes called the condition; I am not aware
of any generally-accepted name for the proposition on the left.

Note that a conditional credence is assigned to an ordered pair of propo-
sitions. It makes a difference which proposition is supposed and which is
evaluated. Consider a case in which I’'m going to roll a fair die and you have
various credences involving the proposition E that it comes up even and the
proposition 6 that it comes up six. Compare:

cr(6|E)=1/3 (3.2)
cr(E|6) =1 (3.3)

3.1.1 The Ratio Formula

Section 2.2 described Kolmogorov’s probability axioms, which Bayesians
take to represent rational constraints on an agent’s unconditional credences.
Bayesians then add a constraint relating conditional to unconditional cre-
dences:
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Figure 3.1: cr(P|Q)

Ratio Formula: For any P and @ in £, if cr(Q) > 0 then

cr(P & Q)

@(PQ) = T

Stated this way, the Ratio Formula remains silent on the value of cr(P| Q)
when cr(Q) = 0. There are various positions on how one should assign
conditional credences when the condition has credence 0; we’ll cover some
of them in our discussion of the infinite in Chapter 5.

Why should an agent’s conditional credences equal the ratio of those
unconditionals? Consider Figure 3.1. The rectangle represents all the pos-
sible worlds the agent entertains. The agent’s unconditional credence in P
is the fraction of that rectangle taken up by the P-circle. (The area of the
rectangle is stipulated to be 1, so that fraction is the area of the P-circle
divided by 1, which is just the area of the P-circle.) When we ask the agent
to evaluate a credence conditional on the supposition that (), she temporar-
ily narrows her focus to just those possibilities that make @ true. In other
words, she excludes from her attention the worlds I've shaded in the dia-
gram, and considers only what’s in the Q-circle. The agent’s credence in P
conditional on @ is the fraction of the Q-circle occupied by P-worlds. So
it’s the area of the PQ overlap divided by the area of the entire @-circle,
which is cr(P & Q)/cr(Q).

In the scenario in which I roll a fair die, your initial doxastic possibilities
include all six outcomes of the die roll. If T ask you to evaluate cr(6| E),
you exclude from consideration all the odd outcomes. That doesn’t mean
you've actually learned that the die outcome is even; I've just asked you
to suppose momentarily that it comes up even and assign a confidence to
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other propositions in light of that supposition. You distribute your credence
equally over the outcomes that remain under consideration (2, 4, and 6), so
your credence in 6 conditional on even is 1/3.

We get the same result from the Ratio Formula:

_er(6&E) 1/6 1
cr(6| E) = “w(B) 123 (3.4)

The Ratio Formula allows us to calculate your conditional credences (confi-
dences under a supposition) in terms of your unconditional credences (con-
fidences assigned when no suppositions are made). Hopefully it’s obvious
why E gets an unconditional credence of 1/2 in this case; as for 6& E, that’s
equivalent to just 6, so it gets an unconditional credence of 1/6.

Warning: Mathematicians often take the Ratio Formula to be a
definition of conditional probability. From their point of view, a
conditional probability has the value it does in virtue of two uncon-
ditional probabilities’ standing in a certain ratio. But I do not want
to reduce the possession of a conditional credence to the possession
of two unconditional credences standing in a particular relation. I
take a conditional credence to be a genuine mental state (an attitude
towards an ordered pair of propositions) capable of being elicited in
various ways, such as by asking an agent her confidence in a proposi-
tion given a supposition. The Ratio Formula is a rational constraint
on how an agent’s conditional credences should relate to her un-
conditional credences, and as a normative constraint (rather than a
definition) it can be violated—by assigning a conditional credence
that doesn’t equal the specified ratio.

The point of the previous warning is that the Ratio Formula is a rational
constraint, and not all agents meet all the rational constraints on their
credences. Yet for an agent who does satisfy the Ratio Formula, there can
be no difference in her conditional credences without a difference in her
unconditional credences as well. (We say that a rational agent’s conditional
credences supervene on her unconditional credences.) Fully specifying an
agent’s unconditional credence distribution suffices to specify her conditional
credences as well. For instance, we might specify Andy’s and Bob’s credence
distributions using the following stochastic truth-table:
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C | H|cry crp

T | T 1/4199/200
T|F |1/4] 1/200
F | T|1/4] 1/200
F | F | 1/4199/200

Here cry represents Andy’s credences and crp represents Bob’s. Andy’s
unconditional credence in C is identical to Bob’s—the values on the first
two rows sum to 1/2 for each of them. Similarly, Andy and Bob have the
same unconditional credence in H (the sum of the first and third rows).
Yet Andy and Bob disagree in their confidence that the coin will come up
heads given that the clairvoyant predicts heads. Using the Ratio Formula,
we calculate this conditional credence by dividing the value on the first row
of the table by the sum of the values on the first two rows. This yields:
1/4

cra(H|C) =~

1,99  99/200
12 2

A — crp(H .
#* 200 ~ 1007200 ~ B 1C) (3:5)

Bob has high confidence in the clairvoyant’s abilities. So on the supposition
that the clairvoyant predicts heads, Bob is almost certain that heads will
come up on the flip. Andy, on the other hand, is skeptical, so supposing
that the clairvoyant predicts heads leaves his opinions about the flip outcome
unchanged.

3.1.2 Consequences of the Ratio Formula

Combining the Ratio Formula with the probability axioms yields further
useful probability rules. First we have the

Law of Total Probability: For any finite partition Q1,Q2,...,Q, in L,

cr(P) =cr(P|Q1) - cr(Q1) + cr(P|Q2) - cr(Q2)+
oot er(P|Qn) - cer(@Qy)

Suppose you're trying to predict whether I will bike to work tomorrow,
but you’re unsure if the weather will rain, hail, or be clear. The Law of
Total Probability allows you to systematically work through the possibilities
in that partition. You multiply your confidence that it will rain by your
confidence that I'll bike should it rain. Then you multiply your confidence
that it’ll hail by your confidence in my biking given hail. Finally you multiply
your unconditional credence that it’ll be clear by your conditional credence
that I'll bike given that it’s clear. Adding these three products together gives
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your unconditional credence that I'll bike. (In the formula the proposition
that I'll bike plays the role of P and the three weather possibilities are ()1,
Q2, and Q3.)

Next, the Ratio Formula makes any conditional credence distribution
itself a probability distribution. To understand what that means and how
it works in general, we’ll start with a very special example. Let’s say I ask
you to report your unconditional credences in some propositions. Then I ask
you to assign credences to those propositions conditional on the supposition
of...nothing. I give you nothing more to suppose. Clearly you’ll just report
back to me the same credences. Bayesians represent vacuous information
as a tautology, so what we’ve just seen is that a rational agent’s credences
conditional on a tautology equal her unconditional credences.? In other
words, for any P in £

cr(P|T) = cr(P) (3.6)

Since we’re assuming the agent’s unconditional credences satisfy the
probability axioms, the credences that result if we ask her to suppose a tau-
tology also satisfy the probability axioms. The distribution cr(- | T) (where
the “” is a blank to be filled by a proposition) must be a probability distri-
bution. Remarkably, this turns out to be true for non-tautologous conditions
as well. Pick any proposition R in £ such that cr(R) > 0, and the function
you get by taking various credences conditional on the supposition of R will
satisfy the probability axioms. That is,

e For any proposition P in £, cr(P|R) = 0.
e For any tautology T in £, cr(T|R) = 1.

e For any mutually exclusive propositions P and @ in L,
cr(Pv Q|R)=cr(P|R) +cr(Q|R).

In other words, cr(- | R) satisfies Kolmogorov’s probability axioms. (You’ll
prove this in Exercise 3.3.)

Knowing that a conditional credence distribution is a probability dis-
tribution can be a handy shortcut. (It also has a significance for updat-
ing credences that we’ll discuss in Chapter 4.) Because it’s a probability
distribution, a conditional credence distribution must satisfy all the conse-
quences of the probability axioms we saw in Section 2.2.1. If I tell you that
cr(P| R) = 0.7, you know that cr(~P | R) = 0.3, by the following implemen-
tation of the Negation rule:

cr(~P|R) =1—cr(P|R) (3.7)
Similarly, by Entailment if P = @ then cr(P|R) < cr(Q | R).
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3.1.3 Bayes’ Theorem

The most famous consequence of the Ratio Formula and Kolmogorov’s ax-
ioms is
Bayes’ Theorem: For any H and E in L,
cr(E|H)-cr(H)
cr(E)

cr(H|E) =

The first thing to say about Bayes’ Theorem is that it is a theorem—it can
be proven straightforwardly from the axioms and Ratio Formula. This is
worth remembering, because there is a great deal of controversy about how
Bayesians apply the theorem. (The significance they attach to this theorem
is how Bayesians came to be called “Bayesians”.)

What philosophical significance could attach to an equation that is, in
the end, just a truth of mathematics? The theorem was first articulated by
the Reverend Thomas Bayes in the 1700s.® Prior to Bayes, much of prob-
ability theory was concerned with problems of direct inference. Direct
inference starts with the supposition of some probabilistic hypothesis, then
asks how likely that hypothesis makes a particular experimental result. You
probably learned to solve many direct inference problems in school, such as
“Suppose I flip a fair coin 20 times; how likely am I to get exactly 19 heads?”
Here the probabilistic hypothesis H is that the coin is fair, and the exper-
imental result F is exactly 19 heads. Your credence that the experimental
result will occur on the supposition that the hypothesis is true—cr(E | H)—
is called the likelihood.*

Yet Bayes was also interested in inverse inference. Instead of making
suppositions about hypotheses and determining probabilities of courses of
evidence, his theorem allows us to calculate probabilities of hypotheses from
suppositions about evidence. Instead of calculating the likelihood cr(E | H),
Bayes’ Theorem shows us how to calculate cr(H | E). A problem of inverse
inference might ask, “Suppose a coin comes up heads on exactly 19 of 20
flips; how probable is it that the coin is fair?”

Assessing the significance of Bayes’ Theorem, Hans Reichenbach wrote,

The method of indirect evidence, as this form of inquiry is called,
consists of inferences that on closer analysis can be shown to
follow the structure of the rule of Bayes. The physician’s infer-
ences, leading from the observed symptoms to the diagnosis of
a specified disease, are of this type; so are the inferences of the
historian determining the historical events that must be assumed
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for the explanation of recorded observations; and, likewise, the
inferences of the detective concluding criminal actions from in-
conspicuous observable data. ... Similarly, the general inductive
inference from observational data to the validity of a given scien-
tific theory must be regarded as an inference in terms of Bayes’
rule. (Reichenbach 1935/1949, pp. 94-5)°

Here’s an example of inverse inference: You're a biologist studying a
particular species of fish, and you want to know whether the genetic allele
coding for blue fins is dominant or recessive. Intially you assign 50-50 cre-
dence to each possibility. A simple direct inverse from the theory of genetics
tells you that if the allele is dominant, roughly 3 out of 4 species members
will have blue fins; if the allele is recessive blue fins will appear on roughly
25% of the fish. But you're going to perform an inverse inference, mak-
ing experimental observations to decide between genetic hypotheses. You
will capture fish from the species at random and examine their fins. How
significant will your first observation be to your credences in dominant vs.
recessive? When you contemplate various ways that observation might turn
out, how should supposing one outcome or the other affect your credences
about the allele? Before we do the calculation, try estimating how confident
you should be that the allele is dominant on the supposition that the first
fish you observe has blue fins.

In this example our hypothesis H will be that the blue-fin allele is dom-
inant. The evidence E to be supposed is that a randomly-drawn fish has
blue fins. We want to calculate the posterior value cr(H | E). This value
is called the “posterior” because it’s your credence in the hypothesis H af-
ter the evidence E has been supposed. In order to calculate this posterior,
Bayes’ Theorem requires the values of cr(E | H), cr(H), and cr(E).

cr(E | H) is the likelihood of drawing a blue-finned fish on the hypothesis
that the allele is dominant. On the supposition that the allele is dominant,
75% of the fish have blue fins, so your cr(FE | H) value should be 0.75. The
other two values are known as priors; they are your unconditional credences
in the hypothesis and the evidence before anything is supposed. The prior
in the hypothesis H is easy—we said you initially split your credence 50-50
between dominant and recessive. So cr(H) is 0.5. But what about the prior
in the evidence? How confident are you before observing any fish that the
first one you draw will have blue fins?

Here we can apply the Law of Total Probability to the partition consist-
ing of H and ~H. This yields:

cr(E)=cr(E|H) - -cr(H)+ cr(E|~H) -cr(~H) (3.8)
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The values on the righthand side are all either priors in the hypothesis or
likelihoods. These values we can easily calculate. So

cr(E)=0.75-0.5+0.25-0.5=0.5 (3.9)

Plugging all these values into Bayes’ Theorem gives us

E|H) cr(H) 0.75-0.5
cr(E) 05

ex(H | B) = & —0.75 (3.10)

Observing a single fish has the potential to change your credences sub-
stantially. On the supposition that the fish you draw has blue fins, your
credence that the blue-fin allele is dominant goes from its prior value of 1/2
to a posterior of 3/4.

Again, all of this is strictly mathematics from a set of axioms that are
rarely disputed. So why has Bayes’ Theorem been the focus of controversy?
One issue is the role Bayesians see the theorem playing in updating our atti-
tudes over time; we’ll return to that application of the theorem in Chapter
4. But the main idea that Bayesians take from Bayes—and that has proven
controversial—is that probabilistic inverse inference is the key to induction.
Bayesians think the primary way we ought to draw conclusions from data—
how we ought to reason about scientific hypotheses, say, on the basis of
experimental evidence—is by calculating posterior credences using Bayes’
Theorem. This view stands in direct conflict with other statistical methods,
such as frequentism and likelihoodism. Once we have considerably deepened
our understanding of Bayesian Epistemology, we will discuss this conflict in
Chapter XXX.

Before moving on, I'd like to highlight two useful alternative forms of
Bayes’ Theorem. We’ve just seen that calculating the prior of the evidence—
cr(FE)—can be easier if we break it up using the Law of Total Probability.
Incorporating that manuever into Bayes’ Theorem yields

cr(FE|H)-cr(H)

HIE) = G ETHY  a(H) + (B ~H) - r(~H)

(3.11)

When a particular hypothesis H is under consideration, its negation ~H is
known as the catchall hypothesis. So this form of Bayes’ Theorem calcu-
lates the posterior in the hypothesis from the priors and likelihoods of the
hypothesis and its catchall.

In other situations we have multiple hypotheses under consideration in-
stead of just one. Given a finite partition of n hypotheses Hy, Ho, ..., Hy,
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the Law of Total Probability transforms the denominator of Bayes’ Theorem
to yield

cr(H; | E) = cr(E| H;) - cr(Hi)

cr(E|Hy) - cr(Hy) + cr(E|Hy) - cer(Hg) + ...+ cr(E | Hy) - cr(Hy,)

(3.12)
This version allows you to calculate the posterior of one particular hypothesis
H; in the partition from the priors and likelihoods of all the hypotheses.

3.2 Relevance and independence

Andy doesn’t believe in hocus pocus; from his point of view, information
about what a clairvoyant predicts is irrelevant to determining how a coin
flip will come out. So supposing that a clairvoyant predicts heads makes no
difference to Andy’s confidence in a heads outcome. If C says the clairvoyant
predicts heads, H says the coin lands heads, and crg is Andy’s credence
distribution, we have

cra(H|C)=1/2=cra(H) (3.13)

Generalizing this idea yields a key definition: Proposition P is proba-
bilistically independent of proposition @) relative to distribution cr just
in case

cr(P| Q) = cr(P) (3.14)

In this case Bayesians also say that @ is irrelevant to P. When @ is
irrelevant to P, supposing ) leaves an agent’s credence in P unchanged.

Notice that probabilistic independence is always relative to a credence
distribution cr. The very same propositions P and ) might be independent
relative to one credence distribution but dependent relative to another. (Rel-
ative to Andy’s credences the clairvoyant’s prediction is irrelevant to the flip
outcome, but relative to the credences of his friend Bob—who believes in
psychic powers—it is not.) In what follows I may omit reference to a par-
ticular credence function when context makes it clear, but you should keep
the relativity of independence to probability distribution in the back of your
mind.

While Equation (3.14) will be our official definition of probabilistic in-
dependence, there are many equivalent tests for independence. Given the
probability axioms and Ratio Formula, the following equations are all true
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just when Equation (3.14) is:5

cr(P) = cr(P|~Q) (
cr(P|Q) =cr(P|~Q) (3.16

cr(Q[P) = cr(Q) = cr(Q [ ~P) (

cr(P& Q) = cr(P) - cr(Q) (

The equivalence of Equations (3.14) and (3.15) tells us that if supposing
() makes no difference to an agent’s confidence in P, then supposing ~@)
makes no difference as well. The equivalence of (3.14) and (3.17) shows
us that independence is symmetric: if supposing ) makes no difference to
an agent’s credence in P, supposing P won’t change the agent’s attitude
towards @ either. Finally, Equation (3.18) embodies a useful probability
rule:

Multiplication: P and @ are probabilistically independent relative to cr
if and only if cr(P & Q) = cr(P) - cr(Q).

(Some authors define probabilistic independence using this biconditional,
but we will define independence using Equation (3.14) and then treat Mul-
tiplication as a consequence.)

Notice that we can calculate the credence of a conjunction by multiplying
the credences of its conjuncts only when those conjuncts are independent.
This trick will not work for any arbitrary propositions. The general formula
for credence in a conjunction can be derived quickly from the Ratio Formula:

cr(P&Q)=cr(P|Q) - cr(Q) (3.19)

When P and @) are probabilistically independent, the first term on the right-
hand side equals cr(P).

It’s important not to get Multiplication and Finite Additivity confused.
Finite Additivity says that the credence of a disjunction is the sum of the
credences of its mutually exclusive disjuncts. Multiplication says that the
credence of a conjunction is the product of the credences of its independent
conjuncts. If T flip two fair coins in succession, heads on the first and heads
on the second are independent, while heads on the first and tails on the first
are mutually exclusive.

Probabilistic independence fails to hold when one proposition is relevant
to the other. Replace the “=" signs in Equations (3.14) through (3.18) with
“>" signs and you have tests for Q’s being positively relevant to P. Once
more the tests are equivalent—if any of the resulting inequalities is true, all
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of them are. @) is positively relevant to P when assuming () makes you more
confident in P. For example, since Bob believes in mysticism he takes the
clairvoyant’s predictions to be highly relevant to the outcome of the coin
flip—supposing that the clairvoyant has predicted heads takes him from
equanimity to near-certainty in a heads outcome. Bob assigns

crp(H |C) = 99/100 > 1/2 = crp(H) (3.20)

Like independence, positive relevance is symmetric. Given his high confi-
dence in the clairvoyant’s accuracy, supposing that the coin came up heads
will make Bob highly confident that the clairvoyant predicted it would.

Similarly, replacing the “=" signs with “<” signs above yields tests for
negative relevance. For Bob, the clairvoyant’s predicting heads is nega-
tively relevant to the coin’s coming up tails. Like positive correlation, nega-
tive correlation is symmetric (supposing a tails outcome makes Bob less con-
fident in a heads prediction). “Relevance” terms have a number of synonyms.
Instead of finding “positively/negatively relevant” terminology, you’ll some-
times find “positively/negatively dependent”, “positively/negatively corre-
lated”, or even “correlated/anti-correlated” used.

The strongest forms of positive and negative relevance are entailment
and refutation. Suppose a hypothesis H has nonextreme prior credence.
If a particular piece of evidence F entails the hypothesis, the probability
axioms and Ratio Formula tell us

cr(H|E) =1 (3:21)

Supposing E takes H from a middling credence to the highest credence
allowed. Similarly, if F refutes H (what philosophers of science call falsifi-
cation), then

cr(H|E)=0 (3.22)

Relevance will be most important to us because of its connection to
confirmation, the Bayesian notion of evidential support. A piece of evidence
confirms a hypothesis only if it’s relevant to that hypothesis. Put another
way, learning a piece of evidence changes a rational agent’s credence in a
hypothesis only if that evidence is relevant to the hypothesis. (Much more
on all this later.)

3.2.1 Conditional independence and screening off

The definition of probabilistic independence compares an agent’s conditional
credence in a proposition to her unconditional credence in that proposition.
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But we can also compare conditional credences. When Bob, who believes
in the occult, hears a clairvoyant’s prediction about the outcome of a fair
coin flip, he takes it to be highly correlated with the true flip outcome.
But what if we ask Bob to suppose that this particular clairvoyant is an
impostor? Once he supposes the clairvoyant is an impostor, Bob may see
the clairvoyant’s predictions as completely irrelevant to the flip outcome.
Let C' be the proposition that the clairvoyant predicts heads, H be the
proposition that the coin comes up heads, and I be the proposition that the
clairvoyant is an impostor. It’s possible for Bob’s credences to satisfy both
of the following equations at once:

cr(H|C) > cr(H) (3.23)
cr(H|C & I) = cr(H | 1) (3.24)

Equation (3.23) tells us that unconditionally, Bob takes C' to be relevant to
H. But conditional on the supposition of I, C' becomes independent of H;
supposing C & I gives Bob the same confidence in H as supposing I alone.

Generalizing this idea yields the following definition of conditional in-
dependence: P is probabilistically independent of ) conditional on R just
in case

cr(P|Q & R) = cr(P| R) (3.25)

If this equality fails to hold, we say that P is relevant to (or dependent on)
@ conditional on R.

One more piece of terminology: We will say that R screens off P from
(@ when P is unconditionally dependent on @ but independent of ) condi-
tional on R. In other words, supposing R makes the correlation between P
and @ disappear. Equations (3.23) and (3.24) demonstrate that for Bob,
I screens off H from C.” We’ll now consider a number of challenging and
puzzling probabilistic phenomena whose explanations involve the notions of
conditional dependence and screening off.

3.2.2 The Gambler’s Fallacy

People often act as if future chancy events will “compensate” for unexpected
past results. When a good hitter strikes out many times in a row, someone
will say he’s “due” for a hit. If a fair coin comes up heads 19 times in a row,
many people become more confident that the next outcome will be tails.
This mistake is known as the Gambler’s Fallacy.® A person who makes
the mistake is thinking along something like the following lines: In twenty
flips of a fair coin, it’s more probable to get 19 heads and 1 tail than it is to
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get 20 heads. So having seen 19 heads, it’s much more likely that the next
flip will come up tails.

This person is providing the right answer to the wrong question. The
answer to the question “When a fair coin is flipped 20 times, is 19 heads and
1 tail more likely than 20 heads?” is yes—in fact, it’s 20 times as likely! But
that’s the wrong question to ask in this case. Instead of wondering what
sorts of outcomes are probable when one flips a fair coin 20 times in general,
it’s more appropriate to ask of this specific case: given that the coin has
already come up heads 19 times, how confident are we that the next flip will
be tails? This is a question about our conditional credence

cr(next flip heads | previous 19 flips heads) (3.26)

How should we calculate this conditional credence? Ironically, it might
be more reasonable to make a mistake in the opposite direction from the
Gambler’s Fallacy. If I see a coin come up heads 19 times, shouldn’t that
make me suspect that it’s biased towards heads? If anything, shouldn’t
supposing 19 consecutive heads make me more confident that the next flip
will come up heads than tails?

This line of reasoning would be appropriate to the present case if we
hadn’t stipulated in setting things up that the coin is fair. The fact that the
coin is fair screens off information about the first 19 flips from the outcome
of the 20th. That is

cr(next flip heads | previous 19 flips heads & fair coin) = (3.27)
cr(next flip heads | fair coin) '

We can justify this equation as follows: Typically, information that a coin
came up 19 times in a row would alter your opinion about whether it’s a fair
coin. Changing your opinion about whether it’s a fair coin would then affect
your prediction for the 20th flip. So typically, information about the first 19
flips alters your credences about the 20th flip by way of your opinion about
whether the coin is fair. But if you've already established that the coin is
fair, information about the first 19 flips has no further significance for your
prediction about the 20th. So conditional on the coin’s being fair, the first
19 flips’ outcomes are irrelevant to the outcome of the 20th flip.

The lefthand side of Equation (3.27) captures the correct question to ask
about the Gambler’s Fallacy case. The righthand side is easy to calculate;
it’s 1/2. So after seeing a coin known to be fair come up heads 19 times, we
should be 1/2 confident that the next flip will be heads.’
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3.2.3 Probabilities are weird! Simpson’s Paradox

Perhaps you’re too much of a probabilistic sophisticate to ever commit the
Gambler’s Fallacy. Perhaps you successfully navigated Tversky and Kah-
neman’s Conjunction Fallacy (Section 2.2.3) as well. But even probability
experts sometimes have trouble with countertuitive relations between con-
ditional and unconditional dependence.

Here’s an example of how odd things can get: In a famous case, the Uni-
versity of California, Berkeley’s graduate departments were investigated for
gender bias in admissions. The concern arose because in 1973 about 44% of
overall male applicants were admitted to graduate school at Berkeley, while
only 35% of female applicants were. Yet when the graduate departments
(where admissions decisions are made) were studied one at a time, it turned
out that individual departments either were admitting men and women at
roughly equal rates, or in some cases were admitting a higher percentage of
female applicants.

This is an example of Simpson’s Paradox, in which probabilistic de-
pendencies (or independencies) that hold conditional on each member of a
partition nevertheless fail to hold unconditionally. A Simpson’s Paradox
case involves a collection with a number of subgroups. Each of the sub-
groups displays the same probabilistic correlation between two traits. Yet
when we examine the collection as a whole that correlation disappears—or
is even reversed!

To see how this can happen, consider another example: In 1995, David
Justice had a higher batting average than Derek Jeter. In 1996, Justice also
had a higher average than Jeter. Yet over that entire two-year span, Jeter’s
average was better than Justice’s.!?
Here are the data for the two hitters:

1995 1996 Combined
Jeter 12/48 .250 | 183/582 .314 | 195/630 .310
Justice | 104/411 .253 | 45/140 321 | 149/551 .270

The first number in each box is the number of hits; the second is the
number of at-bats; the third is the batting average (hits divided by at-bats).
Looking at the table, you can see how Justice managed to beat Jeter for
average in each individual year yet lose to him overall. In 1995 Justice
beat Jeter but both batters hit in the mid-.200s; in 1996 Justice beat Jeter
while both hitters had a much better year. Jeter’s trick was to have fewer
at-bats than Justice during the off year and many more at-bats when both
hitters were going well. Totaling the two years, many more of Jeter’s at-
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bats produced hits at the over-.300 rate, while the preponderance of Justice’s
at-bats came while he was toiling in the .200s.!

Scrutiny revealed a similar effect in Berkeley’s 1973 admissions data.
Bickel, Hammel, and O’Connell (1975) concluded, “The proportion of women
applicants tends to be high in departments that are hard to get into and low
in those that are easy to get into.” Although individual departments were
just as willing to admit women as men, female applications were less success-
ful overall because more were directed at departments with low admission
rates.

How can we express these examples using conditional probabilities? Sup-
pose you select a Jeter or Justice at-bat at random from the 1,181 at-bats
in the combined 1995 and 1996 pool, making your selection so that each of
the 1,181 at-bats is equally likely to be selected. How confident should you
be that the selected at-bat is a hit? How should that confidence change if
you suppose a Jeter at-bat is selected, or an at-bat from 19957

Below is a stochastic truth-table for your credences, assembled from the
real-life statistics above. Here E says that it’s a Jeter at-bat; 5 says it’s from
1995; and H says it’s a hit. (Given the pool from which we’re sampling, ~F
means a Justice at-bat and ~5 means it’s from 1996.)

E|5 | H cr
T|T| T/ 12/1181
T |T|F | 36/1181
T|F | T]183/1181
T|F | F|399/1181
F|T| T |104/1181
F|T|F|307/1181
F|F | T | 45/1181
F|F| F | 95/1181
A bit of calculation with this stochastic truth-table reveals the following:
cr(H|E) > cr(H|~E) (3.28)
cr(H|E&5) <cr(H|~E&5) (3.29)
cr(H|E & ~5) < cr(H|~FE & ~5) (3.30)

If you’re selecting an at-bat from the total sample, Jeter is more likely to get
you a hit than Justice. Put another way, Jeter batting is unconditionally
positively relevant to an at-bat’s being a hit. But Jeter batting is negatively
relevant to a hit conditional on each of the two years in the sample. If you're
selecting from only the at-bats associated with a particular year, you’re more
likely to get a hit if you go with Justice.
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3.2.4 Correlation and causation

You may have heard the expression “correlation is not causation.” People
typically use this expression to point out that just because two events have
both occurred—and maybe occurred in close spatio-temporal proximity—
that doesn’t mean they had anything to do with each other. But “cor-
relation” is a technical term in probability discussions. The propositions
describing two events may both be true, or you might have high credence
in both of them, yet they still might not be probabilistically correlated. For
the propositions to be correlated, supposing one to be true must increase
the probability of the other. I'm confident that I'm under 6 feet tall and
that my eyes are blue, but that doesn’t mean I see those facts as correlated.

So does probabilistic correlation always indicate a causal relationship?
Perhaps not. If I suppose that the fiftieth Fibonacci number is even, that
makes me highly confident that it’s the sum of two primes. But being even
and being the sum of two primes are not causally related; Goldbach’s Con-
jecture that every even number greater than 2 is the sum of two primes is an
arithmetic fact (if it’s a fact at all).!? On the other hand, most correlations
we encounter in everyday life are due to empirical conditions. When two
propositions are correlated due to empirical facts, must the event described
by one cause the event described by the other?

Hans Reichenbach offered a classic counterexample. He wrote,

Suppose two geysers which are not far apart spout irregularly,
but throw up their columns of water always at the same time.
The existence of a subterranean connection of the two geysers
with a common reservoir of hot water is then practically certain.

(1956, p. 158)

If you’ve noticed that two nearby geysers always spout simultaneously, seeing
one spout will increase your confidence that the other is spouting as well.
So your credences about the geysers are correlated. But you don’t think
one geyser’s spouting causes the other to spout. Instead, you hypothesize
an unobserved reservoir of hot water that is the common cause of both
spouts.

Reichenbach proposed a famous principle about empirically correlated
events:

Principle of the Common Cause: When event outcomes are probabilis-

tically correlated, either one causes the other or they have a com-

mon cause.13
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Figure 3.2: A causal fork

addictive personality (A)

smoker (.5) drinker (D)

Along with this principle, he offered a key mathematical insight about cau-
sation: a common cause screens its effects off from each other.

Let’s carefully work through an example. Suppose the proposition that a
particular individual is a drinker is positively relevant to the proposition that
she’s a smoker. This may be because drinking causes smoking—the kinds
of places and social situations in which one drinks may encourage smoking.
But there’s another possible explanation: being a smoker and being a drinker
may both be promoted by an addictive personality, which we can imagine
results from a genetic endowment unaffected by one’s behavior. In that case,
an addictive personality would be a common cause of both being a drinker
and being a smoker. (See Figure 3.2; the arrows indicate causal influence.)

Imagine the latter explanation is true, and moreover is the only true
explanation of the correlation between drinking and smoking. That is, being
a smoker and being a drinker are positively correlated only due to their both
being caused by an addictive personality. Given this assumption, let’s take
a particular subject whose personality you’re unsure about, and consider
what happens to your credences when you make various suppositions about
her.

If you begin by supposing that the subject drinks, this will make you
more confident that she smokes—but only because it makes you more con-
fident that the subject has an addictive personality. On the other hand,
you might start by supposing that the subject has an addictive personal-
ity. That will certainly make you more confident that she’s a smoker. But
once you've made that adjustment, going on to suppose that she’s a drinker
won’t affect your confidence in smoking. Information about drinking affects
your smoking opinions only by way of helping you detect an addictive per-
sonality, and the answer to the personality question was filled in by your
initial supposition. Once an addictive personality is supposed, drinking has
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Figure 3.3: A causal chain

parents’ genes (G)

|

addictive personality (A)

|

smoker (5)

no further relevance to smoking. (Compare: Once a coin is supposed to be
fair, the outcomes of its first 19 flips have no relevance to the outcome of
the 20th.) Drinking is probabilistically independent of smoking conditional
on an addictive personality. That is,

cr(S| D & A) = cr(S | A) (3.31)

Causal forks (as in Figure 3.2) give rise to screening off. A is a common
cause of .S and D, so A screens off S from D.

But that’s not the only way screening off can occur. Consider Figure
3.3. Here we’ve focused on a different portion of the causal structure. Imag-
ine that the subject’s parents’ genes causally determine whether she has an
addictive personality, which in turn causally promotes smoking. Now her
parents’ genetics are probabilistically relevant to the subject’s smoking, but
that correlation is screened off by facts about her personality. Again, if
you're uncertain whether the subject’s personality is addictive, facts about
her parents’ genes will affect your opinion of whether she’s a smoker. But
once you’ve made a firm supposition about the subject’s personality, suppo-
sitions about her parents’ genetics have no further influence on your smoking
opinions. In equation form:

(S| G & A) = cr(S| A) (3.32)

A screens off S from G.'

Relevance, conditional relevance, and causation can interact in very com-
plex ways.'> My goal here has been to introduce the main ideas and termi-
nology employed in their analysis. The state of the art in this field has come
a long way from Reichenbach; computational tools now available can look at
statistical correlations among a large number of variables and hypothesize
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a causal structure lying beneath them. The resulting causal diagrams are
known as Bayes Nets, and have practical applications from satellites to
health care to car insurance to college admissions.

And as for Reichenbach’s Principle of the Common Cause? It remains
highly controversial.

3.3 Conditional credences and conditionals

I want to circle back and get clearer on the nature of conditional credence.
First, it’s important to note that the conditional credences we’ve been dis-
cussing are indicative, not subjunctive. The distinction is familiar from the
theory of conditional propositions. Compare:

If Shakespeare didn’t write Hamlet, someone else did.
If Shakespeare hadn’t written Hamlet, someone else would have.

The former conditional is indicative, while the latter is subjunctive. Typi-
cally one evaluates the truth of a conditional by considering possible worlds
in which the antecedent is satisfied, then seeing if those worlds make the con-
sequent true as well. When you evaluate an indicative conditional, you're
restricted to considering worlds among your doxastic possibilities. Evalu-
ating a subjunctive conditional, on the other hand, permits you to engage
in counterfactual reasoning involving worlds you've actually ruled out. So
for the subjunctive conditional above, you can consider worlds that make
the antecedent true because Hamlet never exists. But for the indicative
conditional, you have to take into account that Hamlet does exist, and
entertain only worlds in which that’s true. So you consider bizarre “author-
conspiracy” worlds which, while far-fetched, satisfy the antecedent and are
among your current doxastic possibilities. In the end, I'm guessing you take
the indicative conditional to be true but the subjunctive to be false.

Now suppose I ask for your credence in the proposition that someone
wrote Hamlet, conditional on the supposition that Shakespeare didn’t. This
value will be high, again because Hamlet exists. In assigning this condi-
tional credence, you aren’t bringing into consideration possible worlds you’d
otherwise ruled out (such as Hamlet-free worlds). Instead, you're focusing
in on the narrow set of author-conspiracy worlds you currently entertain. As
we saw in Figure 3.1, assigning a conditional credence strictly narrows the
worlds under consideration; it’s doesn’t expand your attention to worlds pre-
viously ruled out. Thus the conditional credences discussed in this book—
and typically discussed in the Bayesian literature—are indicative rather than
subjunctive.'6
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Are there more features of conditional propositions that can help us un-
derstand conditional credences? Might we understand conditional credences
in terms of conditionals? Initiating his study of conditional degrees of belief,
F.P. Ramsey warned against assimilating them to conditional propositions:

We are also able to define a very useful new idea—“the degree of
belief in p given q”. This does not mean the degree of belief in
“If p then q”, or that in “p entails q”, or that which the subject
would have in p if he knew ¢, or that which he ought to have.
(1931, p. 82)

Yet many authors failed to heed Ramsey’s warning. It’s very tempting
to equate conditional credences with some simple combination of conditional
propositions and unconditional credences. For example, when I ask, “How
confident are you in P given Q7”, it’s easy to hear that as “Given @, how
confident are you in P?” or just “If Q) is true, how confident are you in P?”
This simple slide might suggest that

cr(P|Q) = r is equivalent to Q — cr(P) =r (3.33)

Here I'm using the symbol “—” to represent some kind of conditional. For
the reasons discussed above, it should be an indicative conditional. But
it need not be the material conditional symbolized by “>”; many authors
think the material conditional’s truth-function fails to accurately represent
the meaning of natural-language indicative conditionals.

There are two problems with the proposal of Equation (3.33). First,
it gets the logic of conditional credences wrong. On most theories of the

indicative conditional (and certainly if — is the material conditional),
X — Z and Y — Z jointly entail (X vY) — Z (3.34)

for any propositions X, Y, and Z. Thus for any propositions A, B, and C
and constant k£ we have

A — [er(C) = k] and B — [cr(C) = k] entail (A v B) — [cr(C) = k]
(3.35)
Combining Equations (3.33) and (3.35) yields

cr(C|A) =kand cr(C|B) =k entail cr(C|Av B) =k (3.36)

which is false. Not only can one design a credence distribution satisfy-
ing the probability axioms and Ratio Formula such that cr(C | A) = k and
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cr(C'|B) = k but cr(C' | Av B) # k; one can even describe real-life examples
in which it’s rational for an agent to assign such a distribution. (See Exercise
3.12.) The failure of Equation (3.36) is another case in which credences con-
found expectations developed by our experiences with classificatory terms.

The second problem with the equivalence proposed by Equation (3.33)
is that it’s just bizarre. cr(P|Q) = r says that when the agent supposes
proposition @ is true, her confidence in P is r. @ — cr(P) = r says that
if Q is actually true, the agent’s unconditional credence in P is actually
r. These claims are oddly mismatched, as brought out by the following
example: Right now you're highly confident that you’ll live for the next
year (proposition P). Conditional on the supposition that the sun exploded
ten seconds ago (proposition ), you are considerably less confident about
your life expectancy. But this doesn’t mean that if (unbeknownst to you)
the sun did explode ten seconds ago, you are right now unconfident that
you’ll be alive in a year.

Perhaps we’ve mangled the transition from conditional credences to con-
ditional propositions. Perhaps we should hear “How confident are you in
P given Q7" as “How confident are you in ‘P, given ()’?” which is in turn
“How confident are you in ‘If (), then P’?” Maybe a conditional credence
is a credence in a conditional. Or perhaps more weakly: an agent assigns a
particular conditional credence value whenever she unconditionally assigns
that value to a conditional. In symbols, the proposal is

cr(P|Q) = r is equivalent to cr(QQ — P) =r (3.37)

for any propositions P and @, any credence distribution cr, and some indica-
tive conditional —. Reading Equation (3.37) left-to-right offers a possible
analysis of conditional credences. On the other hand, some philosophers of
language have read the right-to-left direction as a key to analyzing indicative
conditionals.!”

We can quickly show that Equation (3.37) fails if “—” is read as the
material conditional . Under the material reading, the proposal entails
that

cr(P|Q) = cr(Q o P) (3.38)

Using the probability calculus and Ratio Formula, we can show that Equa-
tion (3.38) holds only when cr(P) = 1 (and @ is nonzero). This is a triviality
result: it shows that Equation (3.38) can hold only for the narrow range of
propositions P of which the agent is absolutely certain. Equation (3.38) does
not express a truth that holds for all conditional credences in all proposi-
tions; nor does Equation (3.37) when “—” is read materially.
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Equation (3.37) can be saved from this objection by construing its “—”

as something other than a material conditional. But Lewis (1976) provided
a clever objection that works whichever conditional — we choose. Begin by
selecting arbitrary propositions P and ). We then derive the following from
the proposal on the table:

cr(Q —» P) =cr(P|Q) [from Equation (3.37)] (3.39)
cr(Q > P|P)=cr(P|Q&P) [see below] (3.40)
cr(Q > P|P)=1 [Q & P entails P] (3.41)
cr(Q » P|~P)=cr(P|Q & ~P) [see below] (3.42)
cr(Q - P|~P)=0 [Q & ~P refutes P] (3.43)
er(Q — P) =cr(Q — P|P)-cx(P) +
cr(QQ > P|~P)-cr(~P) [Law of Tot. Prob.] (3.44)
cr(Q - P)=1-cr(P)+0-cr(~P) [(3.41), (3.43), (3.44)] (3.45)
cr(Q — P) = cr(P) (3.46)
cr(P| Q) = cr(P) [(3.39)] (3.47)
Some of these lines require explanation. The idea of lines (3.40) and (3.42)

is this: We’ve already seen that a credence distribution conditional on a
particular proposition satisfies the probability axioms. This suggests that
we should think of a distribution conditional on a proposition as being just
like any other credence distribution. (We’ll see more reason to think this in
Chapter 4, note 3.) So a distribution conditional on a proposition should
satisfy the proposal of Equation (3.37) as well. If you conditionally suppose
X, then under that supposition you should assign Y — Z the same credence
you would assign Z were you to further suppose Y. In other words,

ca(Y - Z|X)=c(Z|Y & X) (3.48)

In line (3.40) the roles of X, Y, and Z are played by P, @, and P; in line
(3.42) it’s ~P, @, and P.

Lewis has offered us another triviality result. Assuming the probability
axioms and Ratio Formula, the proposal in Equation (3.37) can hold only
for propositions P and @ such that cr(P|Q) = cr(P). In other words,
it can hold only for propositions the agent takes to be independent. Or
(taking things from the other end), the proposed equivalence can hold for
all the conditionals an agent entertains only if the agent takes every pair of
propositions in £ to be independent!

So a rational agent’s conditional credence will not in general equal her
unconditional credence in a conditional. This is not to say that conditional
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credences have nothing to do with conditionals. A popular idea now usually
called “Adams’ Thesis” (Adams 1965) holds that an indicative conditional
Q — P is acceptable to a degree equal to cr(P |Q).'® But we cannot main-
tain that an agent’s conditional credence is equal to her credence that some
conditional is true.

This brings us back to a proposal I discussed in Chapter 1. One might
try to relate degrees of belief to binary beliefs by suggesting that whenever
an agent has an r-valued credence, she has a (binary) belief with r as part of
its content. Working out this proposal for conditional credences reveals how
hopeless it is. Suppose an agent assigns cr(P|Q) = r. Would we suggest
that the agent believes that if @), then the probability of P is 7 This gets
the logic of conditional credences wrong. Perhaps the agent believes that
the probability of “if P, then @)” is r? Lewis’s argument dooms this idea.

I'said in Chapter 1 that the numerical value of an unconditional degree of
belief is an attribute of the attitude taken towards the proposition, not a con-
stituent of that proposition itself. As for conditional credences, cr(P| Q) = r
does not say that an agent takes some attitude towards a conditional with
a probability value in its consequent. Nor does it say that the agent takes
some attitude towards a single, conditional proposition composed of P and
Q. cr(P|Q) = r says that the agent takes an r-valued attitude towards an
ordered pair of propositions—neither of which need refer to the number r.

3.4 Exercises

Unless otherwise noted, you should assume when completing these exercises
that the cr-distributions under discussion satisfy the probability axioms and
Ratio Formula. You may also assume that whenever a conditional cr ex-
pression occurs, the condition has a nonzero unconditional credence so that
the conditional credence is well-defined.

Problem 3.1. Suppose there are 30 people in a room. For each person,
you’re equally confident that their birthday falls on any of the 365 days in a
year. (You're certain none of them was born in a leapyear.) Your credences
about each person’s birthday are independent of your credences about all
the other people’s birthdays. How confident are you that at least two people
in the room share a birthday? (Hint: First calculate your credence that no
two people in the room share a birthday.)

Problem 3.2. One might think that real humans only assign credences that
are rational numbers—and perhaps only rational numbers involving rela-
tively small whole-number numerators and denominators. But we can write
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down simple conditions that require an irrational-valued credence function.
For example, take these three conditions:

LeaY|X)=calX VvY)
2. (X &Y) =1/4
3. er(~X&Y)=1/4

Show that there is exactly one credence distribution over language £ with
atomic propositions X and Y that satisfies all three of these conditions, and
that that distribution contains irrational-valued credences.*

Problem 3.3. Prove that credences conditional on a particular proposition
form a probability distribution. That is, prove that for any proposition R
in £ such that cr(R) > 0, the following three conditions hold:

(a) For any proposition P in L, cr(P|R) = 0.
(b) For any tautology T in £, cr(T|R) = 1.

(¢) For any mutually exclusive propositions P and @ in L,

cr(Pv Q|R)=cr(P|R) +cr(Q|R).

Problem 3.4. Pink gumballs always make my sister sick. (They remind her
of Pepto Bismol.) Blue gumballs make her sick half of the time (they just
look unnatural), while white gumballs make her sick only one-tenth of the
time. Yesterday, my sister bought a single gumball from a machine that’s
one-third pink gumballs, one-third blue, and one-third white. The gumball
made her sick. Applying the version of Bayes’ Theorem in Equation (3.12),
how confident should I be that my sister got a pink gumball yesterday?

Problem 3.5. (a) Prove Bayes’ Theorem from the probability axioms and
Ratio Formula. (Hint: Start by using the Ratio Formula to write down
expressions involving cr(H & E) and cr(E & H).)

(b) Exactly which unconditional credences must we assume to be positive
in order for your proof to go through?

(c) Where exactly does your proof rely on the probability axioms (and not
just the Ratio Formula)?

*1 owe this problem to Branden Fitelson.
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Problem 3.6. Once more, consider the probabilistic credence distribution
specified by this stochastic truth-table (from Exercise 2.5):

P|Q | R| cr
T|T|T]o0.1
T|T|F|02
TIF|T] O
T|F|F|]03
F|T|T]|o01
F|T|F|02
FIF|T] O
F|F|F|O01

Answer the following questions about this distribution:
(a) What is cr(P|Q)?

(b) Is @ positively relevant to P, negatively relevant to P, or probabilisti-
cally independent of P?

(c) What is cr(P | R)?
(d) What is cr(P|Q & R)?

(e) Conditional on R, is @ positively relevant to P, negatively relevant to
P, or probabilistically independent of P?

(f) Does R screen off P from Q7 Explain why or why not.

Problem 3.7. Prove that all the alternative statements of probabilistic
independence in Equations (3.15) through (3.18) follow from our original
independence definition. That is, prove that each Equation (3.15) through
(3.18) follows from Equation (3.14). (Hint: Once you prove that a particular
equation follows from Equation (3.14), you may use it in subsequent proofs.)

Problem 3.8. Show that probabilistic independence is not transitive. That
is, provide a single probability distribution on which all of the following are
true: X is independent of Y, and Y is independent of Z, but X is not inde-
pendent of Z. Show that your distribution satisfies all three conditions. (For
an added challenge, have your distribution assign every state-description a
nonzero unconditional credence.)
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Problem 3.9. In the text we discussed what makes a pair of propositions
probabilistically independent. If we have a larger collection of propositions,
what does it take to make them all independent of each other? You might
think all that’s necessary is pairwise independence—for each pair within the
set of propositions to be independent. But pairwise independence doesn’t
guarantee that each proposition will be independent of combinations of the
others.

To demonstrate this fact, describe a real-world example (spelling out the
propositions represented by X, Y, and Z) in which it would be rational for
an agent to assign credences meeting all four of the following conditions:

Loer(X|Y) = cr(X)
2. cr(X|Z) =cr(X)

3.cx(Y|Z) =cr(Y)

B

Ler(X Y & Z) # cer(X)
Show that your example satisfies all four conditions.

Problem 3.10. Using the program PrSAT referenced in the Further Read-
ings for Chapter 2, find a probability distribution satisfying all the condi-
tions in Exercise 3.9, plus the following additional condition: Every state-
description expressible in terms of X, Y, and Z must have a non-zero un-
conditional probability.

Problem 3.11. After laying down probabilistic conditions for a causal fork,
Reichenbach demonstrated that a causal fork induces correlation. Consider
the following four conditions:

1. cx(A|C) > cr(A|~C)

3

2. cx(B|C) > cr(B|~C)
.cx(A&B|C)=cr(A|C)-cx(B]|C)

4. cx(A& B|~C) =cr(A|~C) - cr(B|~C)

(a) Assuming C'is the common cause of A and B, explain what each of the
four conditions means in terms of relevance, independence, conditional
relevance, or conditional independence.

(b) Prove that if all four conditions hold, then cr(A & B) > cr(A) - cr(B).
(This is a tough one!)
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Problem 3.12. In Section 3.3 I pointed out that the following statement
(labeled Equation (3.36) there) is false:

cr(C|A) =k and cr(C|B) = k entail cr(C|A v B) =k

(a) Describe a real-world example (involving dice, or cards, or something
more interesting) in which it’s rational for an agent to assign cr(C'| A) =
k and cr(C|B) = k but cr(C|A v B) # k. Show that your example
meets this description.

(b) Prove that if A and B are mutually exclusive, then whenever cr(C'| A) =
k and cr(C'| B) = k it’s also the case that cr(C'| A v B) = k.

Problem 3.13. Fact: For any propositions P and @Q, if cr(Q) > 0 then
cr(@Q o P) = cr(P|Q).

(a) Use a stochastic truth-table built on propositions P and @ to prove this
fact.

(b) Show that Equation (3.38) in Section 3.3 entails that cr(P) = 1.

3.5 Further reading

INTRODUCTIONS AND OVERVIEWS

Todd A. Stephenson (2000). An Introduction to Bayesian Net-
work Theory and Usage. Tech. rep. 03. IDIAP

Section 1 provides a nice, concise overview of what a Bayes Net is and how it
interacts with conditional probabilities. (Note that the author uses A, B to
express the conjunction of A and B.) Things get fairly technical after that
as he covers algorithms for creating and using Bayes Nets. Sections 6 and
7, though, contain real-life examples of Bayes Nets for speech recognition,
Microsoft Windows troubleshooting, and medical diagnosis.

CraAssic TEXTS

Hans Reichenbach (1956). The Principle of Common Cause.
In: The Direction of Time. University of California Press,
pp. 157-160

Article in which Reichenbach introduces his account of common causes
in terms of screening off. (Note that Reichenbach uses a period to ex-
press conjunction, and a comma rather than a vertical bar for conditional
probabilities—what we would write as cr(A| B) he writes as P(B, A).)
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David Lewis (1976). Probabilities of Conditionals and Condi-
tional Probabilities. The Philosophical Review 85, pp. 297—
315

Article in which Lewis presents his triviality argument concerning probabil-
ities of conditionals.

EXTENDED DISCUSSION

Frank Arntzenius (1993). The Common Cause Principle. PSA
1992 2, pp. 227-237

Presents a number of objections to Reichenbach’s Principle of the Common
Cause, with citations (when the objections aren’t original to Arntzenius
himself).

Alan Héjek and Ned Hall (1994). The Hypothesis of the Con-
ditional Construal of Conditional Probability. In: Probabil-
ity and Conditionals: Belief Revision and Rational Decision.
Ed. by Ellery Eells and Brian Skyrms. Cambridge Studies
in Probability, Induction, and Decision Theory. Cambridge
University Press, pp. 75-112

H&jek and Hall extensively assess views about conditional credences and
credences in conditionals in light of Lewis’s and other triviality results.

Notes

'Here’s a good way to double-check that 6 & E is equivalent to 6: Remember that
equivalence is mutual entailment. Clearly 6 & E entails 6. Going in the other direction, 6
entails 6, but 6 also entails E. So 6 entails 6 & E. When evaluating conditional credences
using the Ratio Formula we’ll often find ourselves simplifying a conjunction down to just
one or two of its conjuncts. To make this work, the conjunct that remains has to entail
each of the conjuncts that was removed.

2Some authors take advantage of this fact to formalize probability theory in exactly
the opposite order from what I've pursued here. They begin by introducing conditional
probabilites or credences and subject them to a number of constraints somewhat like Kol-
mogorov’s axioms. All the desired rules for unconditional credences are then obtained
by introducing the single constraint that cr(P) = cr(P|T). Just as the Ratio Formula
helps us transform constraints on unconditional credences into constraints on conditional
credences, this rule transforms constraints on conditionals into constraints on uncondi-
tionals. For examples of this conditional-probability-first approach, see (Popper 1955),
(Renyi 1970), and (Roeper and Leblanc 1999).
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3Bayes never published the theorem; Richard Price found it in Bayes’ notes and pub-
lished it after Bayes’ death in 1761. Pierre-Simon Laplace independently rediscovered the
theorem later on and was responsible for much of its early popularization.

4In everyday English “likely” is a synonym for “probable”. Yet R.A. Fisher intro-
duced the technical term “likelihood” to represent a particular kind of probability—the
probability of some evidence given a hypothesis. This somewhat peculiar terminology has
stuck.

®Quoted in (Galavotti 2005, p. 51).

5T’'m assuming throughout this discussion that P, ~P, @, and ~Q all have non-zero
unconditional credences so that the relevant conditional credences are well-defined.

"Different authors define “screening off” in different ways. For example, while condi-
tional independence is interesting only when the propositions in question are uncondition-
ally correlated, most authors leave out the requirement that P be unconditionally relevant
to Q. (I suppose one could alter my definition so that unconditionally-independent P and
Q@ would count as trivially screened off by anything.)

Many authors will say that R screens off P and @ only when P and @) are independent
not only conditionally on R but also conditionally on ~R. This is part of a more general
view on which propositions are simply dichotomous random variables (see Chapter 2,
note 6) and a random variable X screens off Y from Z only if Y and Z are independent
conditional on every possible value of X. If one takes this kind of position, then in Bob’s
credence function I does mot count as screening H off from C, because H and C are
correlated conditional on ~I. Adopting this alternate definition would lead us to re-
characterize some of the examples I'll soon discuss, but would not make any difference to
the causal examples we’ll eventually consider.

8Not to be confused with the Rambler’s Fallacy: I've said so many false things in a
row, the next one must be true!

920 flips of a fair coin provide a good example of what statisticians call IID trials.
“IID” stands for “independent, identically distributed.” Each of the coin flips is proba-
bilistically independent of all the others; information about the outcomes of other coin
flips doesn’t change the probability that a particular flip will come up heads. The flips
are identically distributed because each has the same probability of producing a heads
outcome.

Anyone who goes in for the Gambler’s Fallacy and thinks that future flips will make
up for past outcomes is committed to the existence of some mechanism by which future
flips can respond to what happened in the past. Understanding that no such mechanism
exists leads one to treat repeated flips of the same coin as I1D.

107 Jearned about the Jeter/Justice example from the Wikipedia page on Simpson’s
Paradox. (The batting data for the two hitters is widely available.) The UC Berkeley
example was brought to the attention of philosophers by (Cartwright 1979).

1 An analogy: Suppose we each have some gold bars and some silver bars. Each gold
bar you're holding is heavier (and therefore more valuable) than each of my gold bars.
Each silver bar you’re holding is heavier (and more valuable) than each of my silver bars.
Then how could I possibly be richer than you? If I have many more gold bars than you,
while you have more silver than I.

12You may be concerned that arithmetic facts are true in every possible world, and
so cannot rationally receive nonextreme credences, and so cannot be probabilistically
correlated. We’ll come back to that concern in Chapter XXX.

13Pm playing a bit fast and loose with the objects of discussion here. Throughout this
chapter we’re considering correlations in an agent’s credence distribution. Reichenbach
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was concerned not with probabilistic correlations in an agent’s credences but instead with
correlations in objective frequency or chance distributions (more about which in Chapter
5). But presumably if the Principle of the Common Cause holds for objective probability
distributions, that provides an agent who views particular propositions as empirically
correlated some reason to suppose that the events described in those propositions either
stand as cause to effect or share a common cause.

You might worry that Figure 3.3 presents a counterexample to Reichenbach’s Principle
of the Common Cause, because G and S are unconditionally correlated yet G doesn’t cause
S and they have no common cause. It’s important to the principle that the causal relations
need not be direct; for Reichenbach’s purposes GG counts as a cause of S even though it’s
not the immediate cause of S.

15 Just to indicate a few more complexities that can arise: One can have a common cause
(an “indirect” common cause) that doesn’t screen off its effects from each other. For ex-
ample, if we imagine merging Figures 3.2 and 3.3 to show how the subject’s parents’ genes
are a common cause of both smoking and drinking by way of her addictive personality, it
is possible to arrange the numbers so that her parents’ genetics don’t screen off smoker
from drinker. Even more complications arise if some causal arrows do end-arounds past
others—what if in addition to the causal structure just described, the parents’ genetics
tend to make them smokers which in turn influences the subject’s smoking behavior?

0One could study a kind of attitude different from the conditional credences in this
book, and to which the Ratio Formula applies—something like a subjunctive degree of
belief. Joyce (1999) does exactly that, but is careful to distinguish his analysandum from
standard conditional degrees of belief.

"While Equation (3.37) has often been read as an analysis in one direction or another,
it could also be read as a normative constraint: If an agent is rational, she will assign the
same value to cr(P | Q) as she does to cr(Q — P) for any P and Q. Since our arguments
against Equation (3.37) will be based on the probability axioms and Ratio Formula, and
since we assume that rational credences also satisfy those constraints, such a normative
interpretation would ultimately be vulnerable to our arguments as well.

BInterestingly, this idea is often traced back to a suggestion in Ramsey, known as
“Ramsey’s test”. (Ramsey 1929/1990, p. 155n)



