Chapter 2

Probability Distributions

The main purpose of this chapter is to introduce Kolmogorov’s probability
axioms. These are the first three core rules of Bayesianism. They represent
constraints that an agent’s unconditional credence distribution at a given
time must satisfy in order to be rational.

The chapter begins with a quick overview of propositional and predicate
logic. The goal is to remind readers of logical notation and terminology we
will need later; if this material is new to you, you can learn it from any
introductory logic text. Next I introduce the notion of a numerical distri-
bution over a propositional language, the tool Bayesians use to represent an
agent’s degrees of belief. Then I present the probability axioms, which are
mathematical constraints on such distributions.

Once the probability axioms are on the table, I point out some of their
more intuitive consequences. The probability calculus is then used to analyze
the Lottery Paradox scenario from Chapter 1, and Tversky and Kahneman’s
Conjunction Fallacy example.

Kolmogorov’s axioms are the canonical way of defining a probability dis-
tribution, and are useful for doing probability proofs. Yet there are other,
equivalent mathematical structures that Bayesians often use to illustrate
points and solve problems. After presenting the axioms, this chapter de-
scribes how to work with probability distributions in two alternate forms:
Venn diagrams and stochastic truth-tables.

I end the chapter by explaining what I think are the most distinctive
elements of probabilism, and how probability distributions go beyond what
one obtains from a comparative confidence ordering.
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Figure 2.1: The space of possible worlds

2.1 Propositions and propositional logic

While other approaches are sometimes used, we will assume that degrees of
belief are assigned to propositions.! In any particular application we will
be interested in the degrees of belief an agent assigns to the propositions in
some language L. £ will contain a finite number of atomic propositions,
which we will usually represent with capital letters (P, @, R, etc.).

The rest of the propositions in £ are constructed in standard fashion
from atomic propositions using five propositional connectives: ~, &, v,
D, and =. ~P is true just in case P is false. P & @ is true just in case
both P and @ are. “v” represents inclusive “or”; P v @ is false just in case
P and @Q are both false. “2” represents the material conditional; P o @ is
false just in case P is true and @) is false. P = () is true just in case P and
Q) are both true or P and @) are both false.

Philosophers sometimes think about propositional connectives using sets
of possible worlds. Possible worlds are somewhat like the alternate uni-
verses to which characters travel in science-fiction stories—events occur in
a possible world, but they may be different events than occur in the actual
world (the possible world in which we live). Possible worlds are maximally
specified, such that for any event and any possible world that event either
does or does not occur in that world. And the possible worlds are plentiful
enough such that for any combination of events that could happen, there is
a possible world in which that combination of events does happen.

We can associate with each proposition the set of possible worlds in
which that proposition is true. Imagine that in the Venn diagram of
Figure 2.1, the possible worlds are represented as points inside the rectangle.
Proposition P might be true in some of those worlds, false in others. We
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Figure 2.2: The set of worlds associated with P v @

can draw a circle around all the worlds in which P is true, label it P, and
then associate proposition P with the set of all possible worlds in that circle
(and similarly for proposition Q).

The propositional connectives can also be thought of in terms of possible
worlds. ~ P is associated with the set of all worlds lying outside the P-circle.
P & @ is associated with the set of worlds in the overlap of the P-circle and
the Q-circle. P v @ is associated with the set of worlds lying in either the
P-circle or the @Q-circle. (The set of worlds associated with P v @ has been
shaded in Figure 2.2 for illustration.) P S @ is associated with the set
containing all the worlds except those that lie both inside the P-circle and
outside the Q-circle. P = () is associated with the set of worlds that are
either in both the P-circle and the Q-circle or in neither one.?

Warning: I keep saying that a proposition can be “associated” with
the set of possible worlds in which that proposition is true. It’s
tempting to think that the proposition just is that set of possible
worlds, but we will avoid that temptation. Here’s why: The way
we’ve set things up, any two logically equivalent propositions (such as
P and ~P o P) are associated with the same set of possible worlds.
So if propositions just were their associated sets of possible worlds,
P and ~P o P would be the same proposition. Since we're taking
credences to be assigned to propositions, that would mean that of
necessity every agent assigns P and ~P D P the same credence.
Eventually we’re going to suggest that if an agent assigns P and
~P o P different credences she’s making a rational mistake. But we
want our formalism to suggest it’s a rational requirement that agents
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assign the same credence to logical equivalents, not a necessary truth.
It’s useful to think about propositions in terms of their associated
sets of possible worlds, so we will continue to do so. But to keep
logically equivalent propositions separate entities we will not say
that a proposition just is a set of possible worlds.

Before we discuss logical relations among propositions, a word about
notation. I said we will use capital letters as atomic propositions. We will
also use capital letters as metavariables ranging over propositions. I might
say, “If P entails @, then...”. Clearly the atomic proposition P doesn’t
entail the atomic proposition Q). So what I'm trying to say in such a sentence
is “Suppose we have one proposition (which we’ll call ‘P’ for the time being)
that entails another proposition (which we’ll call ‘Q’). Then...”. At first
it may be confusing sorting atomic proposition letters from metavariables,
but context will hopefully make my usage clear. (Look especially for such
phrases as: “For any propositions P and Q...”.)3

2.1.1 Relations among propositions

Propositions P and ) are equivalent just in case they are associated with
the same set of possible worlds—in each possible world, P is true just in
case ) is. In that case I will write “P == Q”. P entails Q (“P = Q”) just
in case there is no possible world in which P is true but @ is not. On a Venn
diagram, P entails @ when the P-circle is entirely contained within the Q-
circle. (Keep in mind that one way for the P-circle to be entirely contained
in the Q-circle is for them to be the same circlel When P is equivalent to
Q, P entails @ and @ entails P.) P refutes @) just in case P = ~@. When
P refutes Q, every world that makes P true makes @ false.*

For example, suppose I roll a six-sided die. The proposition that the die
came up six entails the proposition that it came up even. The proposition
that the die came up six refutes the proposition that it came up odd. The
proposition that the die came up even is equivalent to the proposition that
it did not come up odd—and each of those propositions entails the other.

P is a tautology just in case it is true in every possible world. In
that case we write “= P”. I will sometimes use the symbol “T” to stand
for a tautology. A contradiction is false in every possible world. I will
sometimes use “F” to stand for a contradiction. A contingent proposition
is neither a contradiction nor a tautology.

Finally, we have properties of proposition sets of arbitrary size. The
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propositions in a set are consistent if there is at least one possible world in
which all those propositions are true. The propositions in a set are incon-
sistent if no world makes them all true.

The propositions in a set are mutually exclusive if no possible world
makes more than one of them true. Put another way, any two propositions
in a mutually exclusive set are inconsistent with each other. (For any propo-
sitions P and @ in the set, P = ~(@Q.) The propositions in a set are jointly
exhaustive if each possible world makes at least one of the propositions in
the set true. In other words, the disjunction of all the propositions in the
set is a tautology.

We will often work with proposition sets whose members are both mutu-
ally exclusive and jointly exhaustive. A mutually exclusive, jointly exhaus-
tive set of propositions is called a partition. Intuitively, a partition is a
way of dividing up the available possibilities. For example, in our die-rolling
example the proposition that the die came up odd and the proposition that
the die came up even form a partition. When you have a partition, each
possible world makes exactly one of the propositions in the partition true.
On a Venn diagram, the regions representing the propositions combine to
fill the entire rectangle without overlapping at any point.

2.1.2 State-descriptions

Suppose we are working with a language that has just two atomic proposi-
tions, P and @Q. Looking back at Figure 2.1, we can see that these proposi-
tions divide the space of possible worlds into four mutually exclusive, jointly
exhaustive regions. Figure 2.3 labels those regions si, so2, s3, and s4. Each
of the regions corresponds to one of the lines in the following truth-table:

P | Q | state-description
s1| T|T P&Q
ss | T|F P& ~Q
ss| F| T ~P&Q
s4 | F|F ~P & ~Q

Each line on the truth-table can also be described by a kind of propo-
sition called a state-description. A state-description in language L is a
conjunction in which (1) each conjunct is either an atomic proposition of
L or its negation; and (2) each atomic proposition of £ appears exactly
once. For example, P & Q and ~P & @) are each state-descriptions. A
state-description succinctly describes the possible worlds associated with a
line on the truth-table. For example, the possible worlds in region sz are
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Figure 2.3: Four mutually exclusive, jointly exhaustive regions

84

just those in which P is false and @ is true; in other words, they are just
those in which the state-description ~P & @ is true. Given any language,
its state-descriptions will form a partition.

Notice that the state descriptions available for use are dependent on the
language we are working with. If instead of language £ we are working with
a language £’ with three atomic propositions (P, @, and R), we will have
eight state-descriptions available instead of £L’s four. (You’ll work with these
eight state-descriptions in Exercise 2.1. For now we’ll go back to working
with language £ and its paltry four.)

Each proposition in a language (except for contradictory propositions)
has an equivalent that is a disjunction of state-descriptions. We call this
disjunction the proposition’s disjunctive normal form. For example, the
proposition P v @ is true in regions si, so, and s3. Thus

PvQ==(P&Q)v (P&~Q) v (~P&Q) (2.1)

The proposition on the righthand side is the disjunctive normal form equiv-
alent of P v Q. To find the disjunctive normal form of a non-contradictory
proposition, figure out which lines of the truth-table it’s true on, then make
a disjunction of the state-descriptions associated with each such line.?

2.1.3 Predicate logic

Sometimes we will want to work with languages that represent objects and
properties. To do so, we will first identify a universe of discourse, the
total set of objects under discussion. Each object in the universe of discourse
will be represented by a constant, which will usually be a lower-case letter
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(a,b,c,...). Properties of those objects and relations among them will be
represented by predicates, which will be capital letters.

Relations among propositions in such a language are exactly as described
in the previous sections, except that we have two new kinds of propositions.
First, our atomic propositions are now generated by applying a predicate to
a constant, as in “Fa”. Second, we can generate quantified sentences, as in
“(Vz)(Fx > ~Fx)”. Since we will be using predicate logic rarely, I won’t
work through the details here; a thorough treatment can be found in any
introductory logic text.

I do want to emphasize, though, that as long as we restrict our atten-
tion to finite universes of discourse, all the predicate logic we need can be
handled by the propositional machinery discussed above. If, say, our only
two constants are ¢ and b and our only predicate is F', then the only atomic
propositions in £ will be Fa and Fb, for which we can build a standard
truth-table:

Fa | Fb | state-description

T T Fa& Fb
T | F Fa & ~Fb
F | T ~Fa& Fb

F F ~Fa& ~Fb

For any proposition containing a quantifier, we can find an equivalent
composed entirely of atomic propositions and propositional connectives. A
universally-quantified sentence will be equivalent to a conjunction of its sub-
stitution instances, while an existentially-quantified sentence will be equiv-
alent to a disjunction of its substitution instances. For example, when our
only two constants are a and b we have:

(3z)Fz 3= Fa v Fb (2.2)
(Vx)(Fx > ~Fz) == (Fa > ~Fa) & (Fb > ~Fb) (2.3)

As long as we stick to finite universes of discourse, every proposition will
have an equivalent that uses only propositional connectives. So even when
we work in predicate logic, every non-contradictory proposition will have an
equivalent in disjunctive normal form.

2.2 Probability distributions

A distribution over language £ assigns a real number to each proposition
in the language.® Bayesians represent an agent’s degrees of belief as a dis-
tribution over a language; I will use “cr” to symbolize an agent’s credence
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distribution. For example, if an agent is 70% confident that it will rain
tomorrow, we will write

cr(R) =0.7 (2.4)

where R is the proposition that it will rain tomorrow. Another way to put
this is that the agent’s unconditional credence in rain tomorrow is 0.7.
(Unconditional credences contrast with conditional credences, which we will
discuss in Chapter 3.)

Bayesians hold that a rational credence distribution satisfies certain
rules. Among these are our first three core rules, Kolmogorov’s ax-
ioms:

Non-Negativity: For any proposition P in £, cr(P) = 0.
Normality: For any tautology T in £, cr(T) = 1.

Finite Additivity: For any mutually exclusive propositions P and @ in

L, cr(PvQ)=cr(P)+cr(Q)

Kolmogorov’s axioms are often referred to as “the probability axioms”.
Mathematicians call any distribution that satisfies these axioms a prob-
ability distribution. Kolmogorov (1950) was the first to articulate these
axioms as the foundation of mathematical probability theory.”

Warning: To a mathematician, these axioms define what it is for a
distribution to be a probability distribution. This is distinct from
the way we use the word “probability” in everyday life. For one
thing, the word “probability” in English may not mean the same
thing in every use. And even if it does, it would be a substantive
philosophical thesis that “probabilities” can be represented by a nu-
merical distribution satisfying Kolmogorov’s axioms. Going in the
other direction, there are numerical distributions satisfying these ax-
ioms that don’t count as “probabilistic” in any ordinary sense. For
example, we could invent a distribution “tv” that assigns 1 to every
true proposition and 0 to every false proposition. To a mathemati-
cian, the fact that tv satisfies Kolmogorov’s axioms makes it a prob-
ability distribution. But a proposition’s tv-value might not match
its probability in the everyday sense. Improbable propositions can
turn out to be true (I just rolled snake-eyes!), and propositions with
high probabilities can turn out to be false.
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Probabilism is the philosophical view that rationality requires an agent’s
credences to form a probability distribution (that is, to satisfy Kolmogorov’s
axioms). Probabilism is attractive in part because it has intuitively ap-
pealing consequences. For example, from the probability axioms we can
prove:

Negation: For any proposition P in £, cr(~P) = 1 — cr(P).

According to Negation, rationality requires an agent with cr(R) = 0.7 to
have cr(~R) = 0.3. Among other things, Negation embodies the sensible
thought that if you’re highly confident that a proposition is true, you should
be unconfident that its negation is.

Usually I'll leave it as an exercise to prove that a particular consequence
follows from the probability axioms, but in this case I'll lay out a proof to
show how it might be done.

Negation Proof:

(1) P and ~P are mutually exclusive. logic

(2) cr(P v ~P)=cr(P)+cr(~P) (1), Finite Additivity
(3) P v ~P is a tautology. logic

(4) cr(Pv ~P)=1 (3), Normality

(5) 1=cr(P)+cr(~P) (2), (4)

(6) cr(~P)=1—cr(P) (5), algebra

2.2.1 Consequences of the probability axioms

Below are a number of further consequences of the probability axioms.
Again, these consequences are listed in part to demonstrate the intuitive
things that follow from the probability axioms. But I'm also listing them
because they’ll be useful in future proofs.

Maximality: For any proposition P in £, cr(P) < 1.
Contradiction: For any contradiction F in £, cr(F) = 0.
Entailment: For any propositions P and @ in L, if P &= @ then
cr(P) < cr(Q).
Equivalence: For any propositions P and Q in £, if P == @ then
cr(P) = cr(Q).
General Additivity: For any propositions P and @) in L,
cr(Pv Q) =cr(P)+cr(Q) —cr(P & Q).
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Decomposition: For any propositions P and @ in L,
cr(P) =cr(P& Q) + cr(P & ~Q).

Partition: For any finite partition of propositions in £, the sum of their
unconditional cr-values is 1.

Together, Non-Negativity and Maximality establish the bounds of our
credence scale. Rational credences will always fall between 0 and 1 (inclu-
sive). Working within these bounds, Bayesians represent certainty that a
proposition is true as a credence of 1 and certainty that a proposition is
false as credence 0. The upper bound is arbitrary—we could have set it at
whatever positive number we wanted. But using 0 and 1 lines up nicely
with everyday talk of being 0% confident or 100% confident in particular
propositions, and also with various considerations of frequency and chance
discussed later in this book.

Entailment is motivated just as we motivated Comparative Confidence
in Chapter 1; we’ve simply moved from an expression in terms of confidence
orderings to one using numerical credences. Understanding equivalence as
mutual entailment, Entailment entails Equivalence. General Additivity is
a generalization of Finite Additivity that allows us to calculate an agent’s
credence in any disjunction, not just a disjunction of mutually exclusive
disjuncts. (When the disjuncts are mutually exclusive, their conjunction
is a contradiction, the cr(P & Q) term equals 0, and General Additivity
takes us back to Finite Additivity.) The Decomposition and Partition rules
naturally go together. In Partition, you have a set of mutually exclusive
propositions with a tautological disjunction, so their unconditional credences
add up to the tautology’s credence of 1. In Decomposition you have two
mutually exclusive propositions whose disjunction is equivalent to P, so
their unconditional credences add up to proposition P’s.

Finally, here’s a trick that involves multiple applications of Finite Ad-
ditivity. Suppose we have a finite set of propositions P, @, R, S, ... that are
mutually exclusive. By Finite Additivity,

cr(P v Q) = cr(P) + cr(Q) (2.5)

Logically, since P and @ are each mutually exclusive with R, P v @ is also
mutually exclusive with R. So Finite Additivity yields

cr([Pv@Q]vR)=cr(PvQ)+cr(R) (2.6)
Combining Equations (2.5) and (2.6) then gives us
cr(Pv Qv R)=cr(P)+cr(Q) + cr(R) (2.7)
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Next we would invoke the fact that P v @) v R is mutually exclusive with S
to derive

cr(Pv Qv RvS)=cr(P)+cr(Q) + cr(R) + cr(5) (2.8)
and repeating this process for each element of the set, we’d eventually have
ca(Pv@QvRvSv..)=c(P)+cr(Q)+cr(R)+cr(S)+... (29)

The idea here is that once you have Finite Additivity for proposition sets
of size 2, you have it for propositions sets of any larger finite size as well.
When the propositions in a finite set are mutually exclusive, the probability
of their disjunction equals the sum of the probabilities of the disjuncts.

2.2.2 A Bayesian approach to the Lottery

In upcoming sections I'll explain two alternative ways of thinking about
the probability calculus. But first let’s use it to do something: a Bayesian
analysis of the situation in the Lottery Paradox. Recall the scenario from
Chapter 1: A fair lottery has one million tickets.® An agent is skeptical
of each ticket that it will win, but takes it that some ticket will win. In
Chapter 1 we saw that it’s difficult to articulate norms on binary belief that
depict this agent as believing rationally. But once we move to degrees of
belief, the analysis is straightforward.

We'll use a language in which the constants a, b, c, . .. stand for the var-
ious tickets in the lottery, and the predicate W says that a particular ticket
wins. A reasonable credence distribution over the resulting language sets

cr(Wa) = cr(Wb) = cr(We) = ... = 1/1,000,000 (2.10)
Negation then gives us
cr(~Wa) = cr(~Wb) = cr(~We) =1 —1/1,000,000 = 0.999999  (2.11)

reflecting the agent’s high confidence for each ticket that that ticket won’t
win.

What about the disjunction saying that some ticket will win? Since the
Wa, Wb, We, ... propositions are mutually exclusive,” we can use multiple
applications of Finite Additivity and the trick discussed at the end of the
previous section to derive

ca(Wav Wby WevWdv...)=

cr(Wa) + cr(Wb)+cr(We) + cr(Wd) + ... (2.12)
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On the righthand side of Equation (2.12) we have one million disjuncts, each
of which has a value of 1/1,000,000. Thus the credence on the lefthand side
is 1.

We now have a model of the Lottery situation in which the agent is
both highly confident that some ticket will win and highly confident of each
ticket that it will not. (Constructing a similar model of the Preface is left
as an exercise for the reader.) There is no tension with the rules of rational
confidence represented in Kolmogorov’s axioms. The Bayesian model not
only accommodates but predicts that if an agent has a small confidence in
each proposition of the form Wz, is certain that no two of those propositions
can be true at once, and yet has a high enough number of Wax propositions
lying around, that agent will be certain (or close to certain) that at least
one of the Wx is true.

This analysis also reveals why it’s difficult to simlutaneously maintain
both the Lockean thesis and the Belief Consistency norm from Chapter 1.
The Lockean thesis implies that a rational agent believes a proposition just
in case her credence in that proposition is above some numerical threshold
(where the threshold is greater than 0.5 but less than 1). For any such
threshold we pick, it’s possible to generate a Lottery-type scenario in which
the agent’s credence that at least one ticket will win clears the threshold,
but her credence for any given ticket that that ticket will lose also clears the
threshold. Given the Lockean thesis, a rational agent will therefore believe
that at least one ticket will win but also believe of each ticket that it will
lose. This violates Belief Consistency, which says that every rational belief
set is logically consistent.

2.2.3 Probabilities are weird! The Conjunction Fallacy

As you work with credences it’s important to remember that probabilistic
relations can function very differently from the relations among categorical
concepts that inform many of our intuitions. In the Lottery situation it’s
perfectly rational for an agent to be highly confident of a disjunction while
having low confidence in each of its disjuncts. That may seem strange.

Tversky and Kahneman (1983) offer another probabilistic example that
runs counter to most people’s intuitions. In a famous study, they presented
subjects with the following prompt:

Linda is 31 years old, single, outspoken and very bright. She ma-
jored in philosophy. As a student, she was deeply concerned with
issues of discrimination and social justice, and also participated
in anti-nuclear demonstrations.
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Figure 2.4: Areas equal to unconditional credences

S4

The subjects were then asked to rank the probabilities of the following propo-
sitions (among others):

e Linda is active in the feminist movement.
e Linda is a bank teller.
e Linda is a bank teller and is active in the feminist movement.

The “great majority” of Tversky and Kahneman’s subjects ranked the
conjunction as more probable than the bank teller proposition. But this
violates the probability axioms! A conjuction will always entail each of
its conjuncts. By our Entailment rule—which follows from the probabil-
ity axioms—the conjunct must be at least as probable as the conjunction.
Being more confident in a conjunction than its conjunct is known as the
Conjunction Fallacy.

2.3 Probability and Venn diagrams

Earlier we used Venn diagrams to visualize propositions and the relations
among them. We can also use Venn diagrams to picture probability dis-
tributions. All we have to do is attach significance to something that was
unimportant before: the size of regions in the diagram. We stipulate that
the area of the entire rectangle is 1. The area of a region inside the rectangle
equals the agent’s unconditional credence in any proposition associated with
that region. (Note that this visualization technique works only for credence
functions that satisfy the probability axioms.)!°
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For example, consider Figure 2.4. There we’ve depicted a probabilistic
credence distribution in which the agent is more confident of proposition P
than she is of proposition @), as indicated by the P-circle’s being larger than
the Q-circle. What about cr(Q & P) versus cr(Q& ~P)? On the diagram the
region labeled sj3 is slightly bigger than the region labeled s1, so the agent is
slightly more confident of @ & ~P than @ & P. (When you construct your
own Venn diagrams you need not include state-description labels like “s3”;
I’ve added them for later reference.)

Warning: It is tempting to think that the size of a region in a Venn
diagram represents the number of possible worlds in that region—the
number of worlds that make the associated proposition true. But this
would be a mistake. Just because an agent is more confident of one
proposition than another does not necessarily mean she associates
more possible worlds with the former than the latter. For example,
if T tell you I have a weighted die that is more likely to come up
6 than any other number, your increased confidence in 6 does not
necessarily mean that you think there are disproportionately many
worlds in which the die lands 6. The area of a region in a Venn
diagram is a useful visual representation of an agent’s confidence in
its associated proposition. We should not read too much out of it
about the distribution of possible worlds.!!

Venn diagrams make it easy to see why certain probabilistic relations
hold. For example, take the General Additivity rule from Section 2.2.1. In
Figure 2.4, the P v @ region contains every point that is in the P-circle,
in the Q-circle, or in both. We could calculate the area of that region by
adding up the area of the P-circle and the area of the Q-circle, but in doing
so we’d be counting the P & @ region (labeled s;1) twice. We adjust for the
double-counting as follows:

cr(Pv Q) =cr(P)+cr(Q) —cr(P & Q) (2.13)

That’s General Additivity.

Figure 2.5 depicts a situation in which proposition P entails proposition
Q. As discussed earlier, this requires the P-circle to be wholly contained
within the @-circle. But since areas now represent unconditional credences,
the diagram makes it obvious that the cr-value of proposition () must be
at least as great as the cr-value of proposition P. That’s exactly what our
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Figure 2.5: P = Q@

Q

Entailment rule requires. (It also shows why the Conjunction Fallacy is a
mistake—imagine () is the proposition that Linda is a bank teller and P is
the proposition that Linda is a feminist bank teller.)

Venn diagrams can be a useful way of visualizing probabilistic relation-
ships. Bayesians often clarify a complex situation by sketching a quick Venn
diagram of the agent’s credence distribution. There are limits to this tech-
nique; with more than 3 circles it becomes difficult to get all the overlapping
regions one needs and to make areas proportional to credences. But there
are also cases in which it’s much easier to see on a diagram why a particular
theorem holds than it is to prove that theorem from the axioms.

2.4 Stochastic truth-tables

Suppose I want to describe an agent’s entire unconditional credence distribu-
tion over a particular language £. There are infinitely many propositions in
L, so do I have to specify infinitely many values? Here the Equivalence rule
helps. If the agent is rational, she will assign the same credence to equivalent
propositions. So if I tell you her unconditional credence in one proposition,
I’ve also told you her credence in its infinitely-many equivalents. All I really
need to do is figure out how many different (non-equivalent) propositions
are expressible in £, and tell you the agent’s credence in each of those.

The trouble is, that can still be a lot. If £ has n atomic propositions,
it will contain 22" non-equivalent propositions. For 2 atomics that’s only
16 credence values to specify, but by the time we reach 4 atomics it’s up to
65,536 distinct values. Luckily, another shortcut is available.

Looking back at Figure 2.4, it’s clear that we really need to specify only
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4 values to determine the areas of all the regions in the figure. Suppose I
give you the following stochastic truth-table:

Pl Q]| cr
S1 T T 0.1
59 T F 0.3
S3 F T102
S4 F F 0.4

This truth-table tells you immediately what the agent’s unconditional cre-
dences are in our four state-descriptions. But it can also be used to deter-
mine the agent’s credences in other propositions. For example, since the
Venn diagram region associated with P v @) contains s1, s3, and s3, we find
cr(P v @) by adding up the cr-values on the first three rows. In this case
the result is 0.6.

A stochastic truth-table for language L is a standard truth-table for
L to which one column has been added: a column specifying the agent’s
unconditional credence in each state-description. There are two rules for
filling in the values in the final column:

1. Each value must be non-negative.

2. The values in the column must sum to 1.

The first rule is required because each of the values in the final column
is the agent’s unconditional credence in some state-description. By Non-
Negativity, it can’t be a negative number. The second rule is required be-
cause the state-descriptions form a partition, so by our Partition rule their
unconditional credences must sum to 1.

As long as we're working with an agent whose credences satisfy the prob-
ability axioms, specifying unconditional credences for the state-descriptions
in this way suffices to specify the rest of the agent’s credence distribution
as well. For any non-contradictory proposition in £, we can find the agent’s
unconditional credence in that proposition by summing the values of the
rows on which the proposition is true. (Contradictions automatically re-
ceive credence 0.)

Unconditional credences can be calculated this way because each row on
which the proposition is true represents one disjunct in its disjunctive normal
form. Since the disjuncts are mutually exclusive (being state-descriptions),
we can find the credence of the whole disjunction by summing the credences
of its parts. For example, we’ve already seen that

PvQ=E(P&Q)v (P&~Q)v (~P&Q) (2.14)
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reflecting the fact that P v @ is true on the first, second, and third rows of
the truth-table. By Equivalence,

car(Pv@Q)=c[(P&Q)v (P& ~Q) v (~P&Q)] (2.15)

Since the state-descriptions on the right are mutually exclusive, multiple
applications of Finite Additivity yield

ca(PvQ)=cr(P&Q)+cr(P&~Q)+cr(~P&Q) (2.16)

So we find the unconditional credence in P v @) by summing the values on
the first, second, and third rows of the table.

Stochastic truth-tables describe an entire credence distribution in an ef-
ficient manner; instead of specifying a credence value for each non-equivalent
proposition in the language, we need only specify values for its state-descriptions.
Credences in state-descriptions can then be used to calculate credences in
other propositions.'?

Stochastic truth-tables can also be used to prove theorems and solve
problems. To do so, we simply replace the credence values with variables:

P|Q|cr
S1 T T a
so | TI|F| b
ss| F| T ¢
s4 | F|F | d

This stochastic truth-table for an £ with two atomic propositions makes
no assumptions about the agent’s specific credence values. It is therefore
fully general, and can be used to prove general theorems about probability
distributions. For example, on this table

cr(P)=a+1b (2.17)

But a is just cr(P & @), and b is cr(P & ~Q). This gives us a very quick
proof of the Decomposition rule from Section 2.2.1.

As for problem-solving, suppose I tell you that my credence distribution
satisfies the probability axioms and also has the following features: I am
certain of P v ), and I am equally confident in () and ~@. I then ask you
to tell me my credence in P © Q.

You might be able to solve this problem by drawing a careful Venn
diagram—perhaps you can even solve it in your head! If not, the stochastic
truth-table provides a purely algebraic solution method. We start by ex-
pressing the constraints on my distribution as equations using the variables
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from the table. Given the second rule for filling out stochastic truth-tables
above, we know that:
a+b+c+d=1 (2.18)

(Sometimes it also helps to invoke the first rule, writing inequalities specify-
ing that a, b, ¢, and d are each greater than or equal to 0. In this particular
case that wouldn’t be useful.) Next we represent the fact that I am equally
confident in @) and ~Q):

cr(Q) = er(~Q) (2.19)
at+c=b+d (2.20)

Finally, we represent the fact that I am certain of P v ). The only line of
the truth-table on which P v @ is false is line sy; if I'm certain of P v @, 1
must assign this state-description a credence of 0. So

d=0 (2.21)

Now what value are we looking for? I've asked you for my credence in
P o Q; that proposition is true on lines s1, s3, and s4; so you need to find
a + ¢+ d. Applying a bit of algebra to Equations (2.18), (2.20), and (2.21),
you should be able to determine that a + ¢+ d = 1/2.

2.4.1 Working with alternate partitions

It’s very common for a Bayesian epistemologist (or a statistician, or an
economist) to say that when an agent rolls a fair six-sided die, her credence
in each of the six possible outcomes should be 1/6. By repeated applications
of Finite Additivity, the agent’s credence in the disjunction that the die will
land with one of its six faces up is 1. And by Negation, the agent’s credence
that something else will happen is 0. But couldn’t the die spontaneously
combust mid-roll? Couldn’t it be destroyed by lasers? Couldn’t it stop
perfectly balanced on one corner? Should a rational agent assign these
possibilities no credence whatsoever?

We will return to this question in our discussion of the Regularity Prin-
ciple in Chapters 4 and 5. For the moment I will set it aside, and note that
it’s often useful methodologically to allow the ruling out of genuine logical
possibilities without worrying about this maneuver’s rationality. Pollsters
calculating confidence intervals for their latest sampling data don’t factor
in the possibility that the United States will be overthrown before the next
presidential election.
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Section 2.1 defined various relations among propositions in terms of pos-
sible worlds. In that context, the appropriate set of possible worlds to
consider was the full set of logically possible worlds. But following the
methodological point just mentioned, it’s often useful to simplify our models
by narrowing our focus to an agent’s doxastically possible worlds—the
subset of logically possible worlds she hasn’t ruled out of consideration.
For example, when we analyzed the Lottery scenario in Section 2.2.2, we
effectively ignored possible worlds in which no tickets win the lottery or in
which more than one ticket wins. Such worlds are logically possible, but for
our purposes it’s simpler to treat the agent as ruling them out of consider-
ation.

All of our earlier definitions work just as well for the set of doxastically
possible worlds as they do for the full set of logically possible worlds. So in
our model of the lottery we treated the proposition that ticket a will win
as mutually exclusive with the proposition that ticket b will win, allowing
us to apply Finite Additivity to the disjunction of those propositions. If we
were working with the full space of logically possible worlds we would have
a world in which both those propositions are true, so they wouldn’t count as
mutally exclusive. But relative to the set of possible worlds we’ve supposed
the agent entertains, they are.

Once we’ve confined our attention to doxastically possible worlds, we can
still build a stochastic truth-table to describe the agent’s credence distribu-
tion. But sometimes it will be more convenient to work with a partition of
doxastic space other than our language’s state-descriptions. It turns out that
we can construct something like a stochastic truth-table for any partition.

For example, suppose I tell you I'm going to roll a loaded die that comes
up 6 on half its rolls (with the remaining rolls distributed equally among the
other numbers). We can represent your credence distribution in light of this
information using a language with six atomic propositions (the die comes
up 1, the die comes up 2, etc.). Six atomic propositions would give us a
stochastic truth-table of 64 rows. Given the certainties we’re supposing you
have about how a die works, most of those rows—any row on which more
than one number comes up, the row on which no number comes up— receive
a credence of 0. But that’s still an unwieldy truth-table to work with.

An alternate approach: For your space of doxastic possibilities, the
atomic propositions that the die comes up 1, that the die comes up 2, etc.
form a partition. You're certain that exactly one of these propositions is
true. So we can build a table using just those six propositions:
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proposition cr

Die comes up 1. | 1/10
Die comes up 2. | 1/10
Die comes up 3. | 1/10
Die comes up 4. | 1/10
Die comes up 5. | 1/10
Die comes up 6. | 1/2

As in a stochastic truth-table, this table assigns each element of the partition
an unconditional credence. Credences in other propositions can then be
calculated just as before. If I ask how confident you are in the proposition
that the die comes up odd, you add up the values on the rows on which
that proposition is true. In this case that’s the first, third, and fifth rows,
so your credence in an odd roll is 1/10 + 1/10 + 1/10 = 3/10.

2.5 What the probability calculus adds

In Chapter 1 we moved from describing agents’ doxastic attitudes in terms
of binary (categorical) beliefs and confidence comparisons to working with
numerical degrees of belief. As we saw there, credences’ added fineness of
grain confers both advantages and disadvantages. On the one hand, cre-
dences allow us to say how much more confident an agent is of one propo-
sition than another. On the other hand, assigning credences over a set of
propositions immediately makes them all commensurable with respect to
the agent’s confidence, which may be an unrealistic result.
Chapter 1 also offered a norm for comparative confidence orderings:

Comparative Entailment: For any pair of propositions such that the
first entails the second, rationality requires an agent to be at
least as confident of the second as the first.

I now want to explore how Kolmogorov’s probability axioms go beyond what
this constraint requires.

Comparative Entailment can easily be derived from the probability axioms—
we’ve already seen that by the Entailment rule, if P = @) then rationality
requires cr(P) < cr(Q). What’s more interesting is how much of the prob-
ability calculus can be recreated simply by assuming that Comparative En-
tailment holds. We saw in Chapter 1 that if Comparative Entailment holds,

a rational agent will assign equal, maximal confidence to all tautologies
and equal, minimal confidence to all contradictions. This doesn’t give spe-
cific numerical confidence values to contradictions and tautologies, because
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Comparative Entailment doesn’t work with numbers. But the probability
axioms’ 0-to-1 scale for credence values is fairly stipulative and arbitrary
anyway. The real essence of Normality, Contradiction, Non-Negativity, and
Maximality can be obtained from Comparative Entailment.

That leaves one axiom unaccounted for. To me the key insight of probabilism—
and the element most responsible for Bayesianism’s distinctive contributions
to epistemology—is Finite Additivity. Finite Additivity places demands on
rational credence that don’t follow from any of the other norms we’ve seen.
To see how, consider the following two credence distributions over a lan-
guage with one atomic proposition:

Mr. Prob:  cr(F)=0 cr(P)=1/6 cr(~P)=5/6 cr(T)

1
Mr. Weak: cr(F) =0 cr(P)=1/36 cr(~P)=25/36 cr(T)=1

From a confidence ordering point of view, Mr. Prob and Mr. Weak are iden-
tical; they each rank ~P above P and both those propositions between the
tautology and the contradiction. Both agents satisfy Comparative Entail-
ment. Both agents also satisfy the Non-Negativity and Normality proba-
bility axioms. But only Mr. Prob satisfies Finite Additivity. His credence
in the tautologous disjunction P v ~P is the sum of his credences in its
mutually exclusive disjuncts. Mr. Weak’s credences, on the other hand, are
superadditive: he assigns more credence to the disjunction than the sum
of his credences in its mutually exclusive disjuncts. (1 > 1/36 + 25/36)

Probabilism goes beyond Comparative Entailment by exalting Mr. Prob
over Mr. Weak. By endorsing Finite Additivity, the probabilist holds that
Mr. Weak’s credences have an irrational feature not present in Mr. Prob’s.
When we apply Bayesianism in later chapters, we’ll see that Finite Additivity—
a kind of linearity constraint—gives rise to some of the theory’s most inter-
esting and useful results.

Of course, the fan of comparative confidence orderings need not restrict
herself to the Comparative Entailment norm. Chapter 7?7 will explore fur-
ther comparative constraints that have been proposed. We will ask whether
those non-numerical norms can replicate all the desirable results secured by
Finite Additivity for the Bayesian credal regime. This will be an especially
pressing question because the impressive numerical credence results come
with a price. When we examine explicit philosophical arguments for the
probability axioms in Part IV of this book, we’ll find that while Normality
and Non-Negativity can be straightforwardly argued for, Finite Additivity
is the most difficult part of Bayesian Epistemology to defend successfully.
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2.6 Exercises

Problem 2.1. (a) List all eight state-descriptions available in a language
with the three atomic sentences P, @), and R.

(b) Give the disjunctive normal form of (P v Q) D R.

Problem 2.2. Here’s a fact: For any propositions P and @, P = @ if and
only if every disjunct in the disjunctive normal form equivalent of P is also
a disjunct of the disjunctive normal form equivalent of Q.

(a) Use this fact to show that (P v Q)& RE (P v Q) D R.

(b) Explain why the fact is true. (Be sure to explain both the “if” direction
and the “only if” direction!)

Problem 2.3. Explain why a language £ with n atomic propositions can
express exactly 22" non-equivalent propositions. (Hint: Think about the
number of state-descriptions available, and the number of distinct disjunc-
tive normal forms.)

Problem 2.4. Suppose your universe of discourse contains only two objects,
named by the constants “a” and “b”.

(a) Find a quantifier-free equivalent of the proposition (Vz)[Fz > (3y)Gy].

(b) Find the disjunctive normal form of your quantifier-free proposition from
part (a).

Problem 2.5. Consider the probabilistic credence distribution specified by
this stochastic truth-table:

cr
0.1
0.2

0
0.3
0.1
0.2

0
0.1

el el I T T v
T | A O
T T | I s T ey

Calculate each of the following values on this distribution:

(a) cr(P=Q)
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(b) cr(R> Q)
(c) ex(P& R) —cr(~P & R)
(d) er(P& Q& R)/cr(R)

Problem 2.6. Can a probabilistic credence distribution assign cr(P) = 0.5,
cr(@) = 0.5, and cr(~P & ~Q) = 0.8? Explain why or why not.*

Problem 2.7. Can an agent have a probabilistic cr-distribution meeting all
of the following constraints?

1. The agent is certain of A o (B = C).

2. The agent is equally confident of B and ~B.
3. The agent is twice as confident of C' as C' & A.
4. cr(B& C & ~A) =1/5.

If not, prove that it’s impossible. If so, provide a stochastic truth-table
and demonstrate that the resulting distribution satisfies each of the four
constraints.

Problem 2.8. Starting with only the probability axioms and Negation,
prove all of the probability rules listed in Section 2.2.1. Your proofs must
be straight from the axioms—mno using Venn diagrams or stochastic truth-
tables! Once you prove a rule you may use it in further proofs. (Hint: You
may want to prove them in an order different from that in which they’re
listed.)

Problem 2.9. Tversky and Kahneman’s finding that ordinary subjects
commit the Conjunction Fallacy has held up to a great deal of experimental
scrutiny. Kolmogorov’s axioms make it clear that the propositions involved
cannot range from most probable to least probable in the way subjects con-
sistently rank them. Do you have any suggestions for why subjects might
consistently make this mistake? Is there any way to read what the subjects
are doing as rationally acceptable?

Problem 2.10. Recall Mr. Prob and Mr. Weak from Section 2.5. Mr. Weak
assigns lower credences to each contingent proposition than does Mr. Prob.
While Mr. Weak’s distribution satisfies Non-Negativity and Normality, it
violates Finite Additivity by being superadditive: it contains a disjunction

*1 owe this problem to Julia Staffel.
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whose credence is greater than the sum of the credences of its mutually
exclusive disjuncts.

Construct a credence distribution for Mr. Bold over language £ with
single atomic proposition P. Mr. Bold should rank every proposition in
the same order as Mr. Prob and Mr. Weak. Mr. Bold should also satisfy
Non-Negativity and Normality. But Mr. Bold’s distribution should be sub-
additive: it should contain a disjunction whose credence is less than the
sum of the credences of its mutually exclusive disjuncts.

2.7 Further reading

INTRODUCTIONS AND OVERVIEWS

Merrie Bergmann, James Moor, and Jack Nelson (2013). The
Logic Book. 6th edition. New York: McGraw Hill

One of many available texts that thoroughly covers the logical material
assumed in this book.

Ian Hacking (2001). An Introduction to Probability and Inductive
Logic. Cambridge: Cambridge University Press

Brian Skyrms (2000). Choice & Chance: An Introduction to In-
ductive Logic. 4th. Stamford, CT: Wadsworth

Each of these books contains a Chapter 6 offering an entry-level, intu-
itive discussion of the probability rules—though neither explicitly uses Kol-
mogorov’s axioms. Hacking has especially nice applications of probabilistic
reasoning, along with many counter-intuitive examples like the Conjunction
Fallacy from our Section 2.2.3.

CLrAssIc TEXTS

A. N. Kolmogorov (1950). Foundations of the Theory of Prob-
ability. Translation edited by Nathan Morrison. New York:
Chelsea Publishing Company

Text in which Kolmogorov laid out his famous axiomatization of probability
theory.

EXTENDED DISCUSSION
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J. Robert G. Williams (2015). Probability and Non-Classical
Logic. In: Ogzford Handbook of Probability and Philosophy.
Ed. by Alan H&ajek and Christopher R. Hitchcock. Oxford
University Press

Covers probability distributions in non-classical logics, such as logics with
non-classical entailment rules and logics with more than one truth-value.
Also briefly discusses probability distributions in logics with extra connec-
tives and operators, such as modal logics.

Branden Fitelson (2008). A Decision Procedure for Probability
Calculus with Applications. The Review of Symbolic Logic 1,
pp. 111-125

Fills in the technical details of solving probability problems algebraically
using stochastic truth-tables, including the relevant meta-theory. Also de-
scribes a Mathematica package that will solve probability problems and
evaluate probabilistic conjectures for you, downloadable for free at
http://fitelson.org/PrSAT/.

Notes

! Among various alternatives, some authors assign degrees of belief to sentences, state-
ments, or sets of events. Some views of propositions make them identical to one of these
alternatives. I will not assume much about what propositions are, except that they are
capable of having truth-values, are expressible by declarative sentences, and have enough
internal structure to contain logical operators. This last assumption could be lifted with
a bit of work.

2Bayesians sometimes define degrees of belief over a sigma algebra. A sigma algebra
is a set of sets that is closed under union, intersection, and complementation. Given a
language L, the sets of possible worlds associated with the propositions in that language
form a sigma algebra. The algebra is closed under union, instersection, and complementa-
tion because the propositions in £ are closed under disjunction, conjunction, and negation
(respectively).

(Strictly speaking, a sigma algebra is closed under countably many applications of set
operations, so some sigma algebras are representable in a language of propositions only if
we allow infinitely many atomic propositions and propositions of infinite length. We will
ignore these complications here.)

3’'m also going to be fairly cavalier about the use-mention distinction, corner-quotes,
and the like.

4Throughout this book we will be assuming a classical logic, in which each proposition
has exactly one of two available truth-values and entailment obeys the inference rules
taught in standard introductory logic classes. For information about probability in non-
classical logics, see the Further Readings at the end of this chapter.
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5Strictly, in order to get the result that the state-descriptions in a language form a
partition and the result that each non-contradictory proposition has a unique disjunctive
normal form, we need to further regiment our definitions. To our definition of a state-
description we add that the atomic propositions must appear in alphabetical order. We
then introduce a canonical ordering of the state-descriptions in a language (say, the order
in which they appear in a standardly-ordered truth-table), and require disjunctive normal
form propositions to contain their disjuncts in canonical order with no repeats.

In the statistics community probability distributions are often assigned over random
variables. Propositions are then thought of as dichotomous random variables capable of
taking only the values “true” and “false” (or 1 and 0). Only rarely in this book will we
look past distributions over propositions to more general random variables.

"Some authors also include Countable Additivity—which we’ll discuss in Chapter 5—
among “Kolmogorov’s axioms”. I’ll use this phrase to pick out only Non-Negativity,
Normality, and Finite Additivity.

8This analysis could easily be generalized to any large number of tickets other than
one million.

9You may be concerned that Wa, Wb, We, . .. are not strictly speaking mutually exclusive—
for instance, there are logically possible worlds in which both Wa and Wb are true—so
Finite Additivity does not apply. We’ll address this concern in Section 2.4.1.

10 A probability distribution over sets of possible worlds is an example of what mathe-
maticians call a “measure”. The function that takes any region of a two-dimensional space
and outputs its area is also a measure. That’s what makes probabilities representable by
areas in a rectangle.

1To avoid the confusion discussed here, some authors use “muddy” Venn diagrams in
which all atomic propositions have regions of the same size and probability weights are
indicated by piling up more or less “mud” on top of particular regions. Muddy Venn
diagrams are difficult to depict on two-dimensional paper, so I’ve stuck with representing
increased confidence as increased region size.

12YWe have argued from the assumption that an agent’s credences satisfy the probability
axioms to the conclusion that her unconditional credence in any non-contradictory propo-
sition is the sum of her credences in the disjuncts of its disjunctive normal form. One
can also argue successfully in the other direction. Suppose I stipulate an agent’s credence
distribution over language £ as follows: (1) I stipulate unconditional credences for L’s
state-descriptions that are non-negative and sum to 1; (2) I stipulate that for every other
non-contradictory proposition in £, the agent’s credence in that proposition is the sum
of her credences in the disjuncts of that proposition’s disjunctive normal form; and (3) I
stipulate that the agent’s credence in each contradiction in 0. We can then prove that the
credence distribution I've just stipulated satisfies Kolmogorov’s three probability axioms.
I'll leave the (somewhat challenging) proof as an exercise for the reader.

13Philosophers sometimes describe the worlds an agent hasn’t ruled out of consideration
as her “epistemically possible worlds”. Yet that term also carries the more specific meaning
of worlds not ruled out by what the agent knows. So T’ll discuss doxastically possible
worlds, which concern what an agent takes to be ruled out rather than what she knows to
be ruled out. (Note that ruling a possibility out in this sense is more than just believing
the possibility does not obtain. One can believe a proposition is false without ruling out
the possibility that it’s true.)



