
Chapter 10

Accuracy Arguments

The previous two chapters considered Representation Theorem and Dutch
Book arguments for probabilism. We criticized both types of argument on
the grounds that they begin with premises about practical rationality—
premises that restrict a rational agent’s attitudes towards acts, or towards
sets of bets. Probabilism hopes to establish that the probability axioms are
requirements of theoretical rationality on an agent’s credences, and it’s diffi-
cult to see how one could move from practical premises to such a theoretical
conclusion.

This chapter considers arguments for probabilism that begin with explic-
itly epistemic premises. The basic idea is that, as a type of representational
attitude, credences can be assessed for accuracy. We are used to assessing
other doxastic attitudes, such as binary beliefs, in terms of their accuracy. A
belief in the proposition P is accurate if P is true; disbelief in P is accurate
if P is false. A traditional argument moves from such accuracy assessments
to a rational constraint on beliefs—in particular, to Chapter 1’s Belief Con-
sistency norm requiring an agent’s beliefs to be logically consistent. The
argument begins by noting that if a set of propositions is logically inconsis-
tent, there is no (logically) possible world in which all those propositions are
true. (That’s the definition of logical inconsistency.) So if an agent’s beliefs
are logically inconsistent, she’s in a position to know that at least some of
them are inaccurate. Moreover, she can know this a priori—without know-
ing any contingent truths. Since an inconsistent set contains falsehoods in
every possible world, no matter which world is actual her inconsistent belief
set misrepresents how things are.1

There are plenty of objections one might make to this argument—starting
with its assumption that beliefs have a teleological “aim” of being accurate.2
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But I present the argument here because it offers a good template for the
arguments for probabilism to be discussed in this chapter. Whatever con-
cerns you have about the Belief Consistency argument above, keep them in
mind as you consider our accuracy arguments for probabilism. Accuracy
arguments for probabilism also face an additional challenge not confronted
by the accuracy argument for Belief Consistency. When we talk about bi-
nary beliefs, it’s pretty obvious what it takes for such a doxastic attitude
to be accurate. But generalizing the notion of accuracy to credences proves
challenging.

When an agent has a nonextreme credence in proposition P , it would be
strange to refer to that credence as either accurate or inaccurate full-stop.
(It’s not as if P has some intermediate degree of truth, and a degree of belief
in P is accurate just in case those numerical degrees match.) So just as
we moved from classificatory to quantitative doxastic attitudes in Chapter
1, we will move from a classificatory to a quantitative concept of accuracy.
We will consider various numerical measures that have been proposed over
the years for gauging just how accurate a particular credence (or set of
credences) is. We will begin with historical “calibration” approaches that
measure the accuracy of credences by comparing them to frequences. Yet
we will fairly quickly reject calibration in favor of the more contemporary
“gradational accuracy” approach.

Gradational accuracy uses “scoring rules” to assess the accuracy of cre-
dence distributions. Among the many possible scoring rules are a particular
class called the “strictly proper scoring rules,” which have been favored his-
torically for reasons we will describe. If we rely on strictly proper scoring
rules, we can produce an argument for probabilism similar to the Belief Con-
sistency argument above: an agent whose credences violate the probability
axioms will be able to see that this decreases those credences’ accuracy in
every possible world. Yet the resulting argument seems to sneak probabil-
ism into its premises in a question-begging way; we will have to consider
whether it can be reformulated to remove this circularity.

Accuracy-based arguments have been offered for a number of Bayesian
norms in addition to probabilism, such as the Principal Principle, the Prin-
ciple of Indifference, etc. (See Further Readings.) We will close this chapter
with an argument for Conditionalization based on minimizing expected fu-
ture inaccuracy. Yet this argument has the same drawback as Dutch Strat-
egy arguments for Conditionalization; it ultimately fails to establish any
truly diachronic norms.
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10.1 Measuring accuracy

10.1.1 Accuracy as calibration

In Section 5.2.1 we briefly considered a putative rational principle for match-
ing one’s credence that a particular outcome will occur to the frequency with
which that outcome occurs. In that context, the match was supposed to be
between one’s credence that outcome B will occur and the frequency with
which one’s evidence suggests B occurs. But we might instead assess an
agent’s credences relative to actual frequencies in the world: If events of
type A actually produce outcomes of type B with frequency x, an agent’s
credence that a particular A-event will produce a B-outcome is more accu-
rate the closer it is to x.

Now imagine that an agent managed to be perfectly accurate with re-
spect to the actual frequencies. In that case, she would assign credence 2{3
to outcomes that occurred 2{3 of the time, credence 1{2 to outcomes that
occurred 1{2 of the time, etc. Or—flipping this around—propositions to
which she assigned credence 2{3 would turn out to be true 2{3 of the time,
propositions to which she assigned credence 1{2 would turn out to be true
1{2 of the time, etc. This approach to accuracy—getting the frequencies
right, as it were—generates the notion of

Calibration: A credence distribution over a finite set of propositions is
perfectly calibrated when, for any x, the set of propositions to
which the distribution assigns credence x contains exactly fraction
x of truths.

For example, suppose your weather forecaster comes on television every
night and reports her degree of confidence that it will rain the next day.
You might notice that every time she says she’s 20% confident of rain, it
rains the next day. In that case she’s not a very accurate forecaster. But if
it rains on just about 20% of those days, we’d say she’s doing her job well.
If exactly 20% of the days on which she’s 20% confident of rain turn out to
have rain (and exactly 30% of the days on which she’s 30% confident. . . etc.),
we say the forecaster is perfectly calibrated. Calibration is an initially
plausible way to gauge accuracy.3

I’ve defined only what it means to be perfectly calibrated; measures can
be designed to assess comparative degrees of calibration among distributions
falling short of the ideal.4 But all the good and bad features of calibration
as accuracy can be understood by thinking just about perfect calibration.
First, the good: van Fraassen (1983) and Abner Shimony (1988) both argue
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for probabilism by showing that in order for a credence distribution to be
embeddable in larger and larger systems with calibration scores approaching
perfection, that credence distribution must satisfy the probability axioms.
This would be a powerful argument, if it weren’t that calibration also has
bad features as a measure of accuracy.

Consider two agents, Sam and Diane, who assign the following credence
distributions over propositions X1 through X4:

X1 X2 X3 X4

Sam 1{2 1{2 1{2 1{2

Diane 1 1 1{10 0

Now suppose that propositions X1 and X2 are true, while X3 and X4 are
false. Look at the table and ask yourself whose credences intuitively seem
more accurate.5

I take it the answer is Diane. Yet Sam’s credences are perfectly calibrated—
he assigns credence 1{2 to all four propositions, exactly half of which are
true—while Diane’s credences are not. This is an intuitive flaw with mea-
suring accuracy by calibration.

The same point can be made in a slightly different way by considering
the plight of a weather forecaster whose job depends on her forecasts’ being
perfectly calibrated over a four-day span.6 Suppose that on each of the first
three nights, she expressed a 75% confidence in rain and it rained the next
day. Tonight, the final night, she looks at her radar images and sees nary a
cloud for hundreds of miles around. She is certain it will not rain tomorrow.
Yet she also knows that if she goes on the air and reports a 0% confidence
in rain, she will wind up less than perfectly calibrated for the four days.
On the other hand, if she reports a 75% confidence in rain tomorrow, she
will get a perfect calibration score (its having rained on exactly 75% of the
days for which she reported a 75% confidence). Assessing the forecaster’s
reports according to their calibration encourages her to misrepresent her
own credences—and the import of her evidence—on the air.

Perhaps there’s something suspicious about assessing an agent’s reports
for accuracy as opposed to her credences themselves. Imagine the fore-
caster’s boss could somehow measure her credences themselves (perhaps
with a fancy galvanometer?) and hire or fire her based on their accuracy.
Then on the fourth night the forecaster will desperately wish she had differ-
ent credences than the ones she has, in fact, carefully formed on the basis of
her available evidence. Assessing the forecaster’s credences on the basis of
calibration makes her evidence-based credences unstable—by the forecaster’s
own lights, she thinks she would do better (with respect to calibration) if she
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assigned different degrees of belief than what she actually does. Yet there’s
nothing wrong with the forecaster’s credences; they’re a perfectly rational
response to her evidence. The problem is with the calibration method of
assessing accuracy; it’s making a particular credence distribution look sub-
optimal when in fact that distribution is perfectly rationally permissible (if
not required!).7

One could make various moves here in an attempt to save calibration
as a measure of accuracy. For instance, calibration scores are less easily
manipulable if we measure them only in the long-run. But then there’s a
question about assessing credences in non-repeatable events, and soon we’re
assessing not actual long-run calibration but instead hypothetical calibration
in the limit. Before long, we’ve made all the desperate moves used to prop
up the frequency theory of probability (Section 5.1.1), and run into all the
same problems.

The correct response here is the same as it was with the frequency theory:
Instead of employing a notion that emerges only when events are situated
in a larger collective, we find a notion that can be meaningfully applied to
single cases considered one at a time (like propensity). Looking back at Sam
and Diane, our intuitive judgment that Diane is globally more accurate than
Sam arises from local judgments that she was more accurate than him on
each individual proposition. If you knew only the truth-value of X1, you
could still have said that Diane was more accurate than Sam on that one
proposition. Clearly our accuracy intuitions can be applied piece-wise—to
one credence at a time.

10.1.2 Gradational accuracy and scoring rules

We will now develop a new measure of the accuracy of a credence distribu-
tion. It will first measure the accuracy (actually, inaccuracy) of each indi-
vidual credence assignment—considered one at a time—then combine those
measurements into a global inaccuracy score for the entire distribution.

Our guiding idea will be that inaccuracy is distance from truth. To
gauge how far an agent’s credence crpXq in proposition X is from the truth-
value of X, we’ll need a way to express that truth-value as a number. A
natural approach lets 1 stand for truth and 0 stand for falsehood. Just as we
have a distribution cr reflecting the agent’s credences in propositions, we’ll
have another distribution tv reflecting the truth-values of those propositions.
Distribution tv will assign numerical values to the propositions in L such
that tvpXq “ 1 if X is true and tvpXq “ 0 if X is false.8

Once we have distribution cr representing the agent’s credences and dis-
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tribution tv representing the truth, we want to measure how far apart these
distributions are from each other. (The farther cr is from tv, the more
inaccurate the agent’s credences are.) Again, our measure of inaccuracy
will start by examining one proposition at a time. So we need a function
ipcrpXq, tvpXqq that tells us for each individual proposition X how far crpXq
is from tvpXq.

It’s helpful to visualize what we’re doing here. Consider the following
number line representing values a distribution might assign to X:

0

tvpXq in ω1

1

tvpXq in ω2

X

crpXq “ 0.3

Here I’ve imagined that your credence in X is 0.3. What is the value of
tvpXq? That depends what the world is actually like. We can imagine two
possible worlds here, ω1 and ω2. In ω1, X is false, so tvpXq “ 0. In ω2, X
is true and tvpXq “ 1.

Our inaccuracy-measuring function ipcrpXq, tvpXqq is going to gauge
how far your credence in X is from its truth-value. A clear desideratum on i
is truth-directedness: i should decrease as crpXq approaches tvpXq. Sup-
pose, for instance, that ω2 is the actual world, so X is true and tvpXq “ 1.
Then your inaccuracy should decrease as you increase your credence in X
(unless your credence surpasses 1!). Yet if ω1 is the actual world, X is false,
and tvpXq “ 1, then your inaccuracy will increase if your credence in X
moves to the right.

Hopefully an obvious candidate for the i-function has suggested itself by
now:

ipcrpXq, tvpXqq “ |tvpXq ´ crpXq| (10.1)

The absolute value is there to keep this quantity positive, reflecting the idea
that we’re measuring the distance between two points. This measure clearly
satisfies truth-directedness. But it’s not the only truth-directed, positive
inaccuracy measure we could invent. Consider, for instance,

ipcrpXq, tvpXqq “ ptvpXq ´ crpXqq2 (10.2)

It’s not obvious why one might prefer this squared local inaccuracy measure
to the absolute value measure proposed above, especially since the two are
ordinally equivalent (given any single truth-value and two credence assign-
ments, both measures will agree on which credence is closer to the truth).
We will return to that question in the next section.
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Right now, I want to explain how to build a local inaccuracy measure
on single credences into a global inaccuracy measure on credence distribu-
tions. The answer is simple. Given a credence distribution cr over a finite
set of propositions X1, X2, . . . , Xn, the global inaccuracy I of that distri-
bution is calculated by summing its inaccuracies for each of the individual
propositions. That is,

Ipcr, ωq “ ipcrpX1q, tvωpX1qq` ipcrpX2q, tvωpX2qq` . . .` ipcrpXnq, tvωpXnqq

(10.3)
What are the ωs doing in this expression? We will often want to evaluate the
inaccuracy of your credence distribution relative to conditions in the actual
world. But sometimes we’ll wonder how inaccurate your credences would’ve
been if you’d maintained your distribution but lived in a different possible
world. In other words, we’ll want to evaluate the inaccuracy of a credence
distribution cr in an arbitrary possible world ω. So we let tvωpXjq represent
the truth-value of proposition Xj in world ω; Ipcr, ωq then measures the
inaccuracy of cr relative to conditions in that world.9

A particular formula Ipcr, ωq for calculating the global inaccuracy of
distribution cr in world ω is called a scoring rule. Substituting different
measures i of local inaccuracy into the formula for I gives us different scor-
ing rules.10 To illustrate how different choices of i lead to substantively
different scoring rules, we will contrast the scoring rules that result from
the absolute-value and squared i-functions of Equations (10.1) and (10.2).
(There are infinitely many other candidates we might consider as well, but
comparing these two will bring out the crucial contrasts.) I already men-
tioned that these two local inaccuracy functions are ordinally equivalent.
But that doesn’t make their respective scoring rules ordinally equivalent—
the absolute-value scoring rule and the squaring rule may disagree on which
overall credence distribution is more accurate in a given world.

Consider a credence distribution over two propositions X and Y . We
visualize such a distribution using a two-dimensional diagram like Figure
10.1. There are now two axes, horizontal for proposition X and vertical
for Y . With two (logically unrelated) propositions there are four possible
worlds, whose locations I have marked on the diagram. Each world corre-
sponds to an ordered pair of possible values for tvpXq and tvpY q. ω3, for
instance, is the world in which X is false and Y is true, so it’s located at
p0, 1q. A credence distribution over the two propositions can also be rep-
resented as an ordered pair; I have marked the distribution that assigns
crpXq “ 0.7 and crpY q “ 0.6.

Let’s assess the inaccuracy of this cr distribution relative to possible
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Figure 10.1: Gradational accuracy for two propositions

ω1:p0, 0q ω2:p1, 0q

ω4:p1, 1qω3:p0, 1q

X

Y

cr:p.7, .6q

world ω4. That is, we imagine ω4 is the actual world and ask how inaccurate
cr then turns out to be. On the diagram, we are asking how far the point
p0.7, 0.6q is from the point p1, 1q.

There are multiple ways to measure the distance between two points
in space. Two of the most natural correspond to the two scoring rules
we’re considering. The scoring rule based on the absolute-value inaccuracy
measure i is depicted in Figure 10.2. According to this scoring rule, the
distance between the credence distribution p0.7, 0.6q and the world p1, 1q is

Ipcr, ω4q “ |1´ 0.7| ` |1´ 0.6| “ 0.3` 0.4 “ 0.7 (10.4)

This scoring rule calculates the distance from p0.7, 0.6q to p1, 1q by totalling
up how far you’d have to move horizontally and vertically to get from one
point to the other. This is sometimes called the “taxicab” distance; it’s how
far you’d have to travel to get from one point to the other if you could travel
only along a grid of city streets laid out parallel to the axes. I’ve illustrated
such a trip with the short arrows in Figure 10.2.

On the other hand, using the squared local inaccuracy measure i yields
a scoring rule known as the Euclidean distance, or Brier score.11 As de-
picted in Figure 10.3, this is the distance “as the crow flies” between two
points, illustrated by the dark arrow from p0.7, 0.6q to p1, 1q. This is what
most people naturally think of when the “distance” between two points is
discussed.
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Figure 10.2: The absolute-value scoring rule

ω1:p0, 0q ω2:p1, 0q

ω4:p1, 1qω3:p0, 1q

X

Y

cr:p.7, .6q

p.48, .9q

Figure 10.3: The Brier score

ω1:p0, 0q ω2:p1, 0q

ω4:p1, 1qω3:p0, 1q

X

Y

cr:p.7, .6q

p.48, .9q
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Strictly speaking the Brier score is not the distance between two points—
as anyone who’s studied the Pythagorean Theorem knows, you calculate the
hypotenuse of a right triangle by squaring the lengths of the legs, summing,
and then taking the square-root. We’ve left off the square-rooting step, be-
cause it makes no ordinal difference: if credence distribution cr is farther
from the truth than distribution cr1 according to the Brier score, cr will
remain farther than cr1 even after those scores are square-rooted. So there
is no ordinal difference between the Brier score and the square-rooted Brier.
On the other hand, there is an important ordinal difference between the
Brier score and the absolute value score.

We can see this difference by observing the dashed elements in Figures
10.2 and 10.3. In each figure, the dashes indicate points in the square that
are the same “distance” from ω4 as p0.7, 0.6q.12 The curves are different
in the two diagrams because each diagram represents a different measure
of “distance”. Now consider the credence distribution that assigns 0.48 to
X and 0.9 to Y . That distribution lies inside the dashed line in Figure
10.2, demonstrating that on the absolute-value score it is closer to ω4 (and
therefore less inaccurate relative to that world) than p0.7, 0.6q. On the other
hand, the same point lies outside the dashed curve in Figure 10.3; according
to the Brier score that distribution is more inaccurate relative to ω4 than
p0.7, 0.6q. Depending on which scoring rule we choose, we may change our
minds about which of two agents has the more accurate credence distribution
in a given world.

10.1.3 Strictly proper scoring rules

So which is the right answer? Is one of the scoring rules we’ve been consid-
eringthe correct measure of inaccuracy? There’s a traditional argument for
preferring the Brier score to the absolute-value score as a measure of inac-
curacy, but to understand it we must first consider expected inaccuracies.

Suppose I’m trying to determine the global inaccuracy of our earlier
credence distribution that assigns crpXq “ 0.7, crpY q “ 0.6. For simplicity’s
sake, let’s suppose I calculate inaccuracies using the absolute-value scoring
rule. We’ve already seen that if the actual world is ω4, the global inaccuracy
of cr will be 0.7 (from Equation (10.4)). Put another way, using the absolute-
value score we have Ipcr, ω4q “ 0.7. But ω4 might not be the actual world.
A bit of calculation will reveal these other global inaccuracy scores:
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Ipcr, ¨q cr1

ω1 1.3 0.1

ω2 0.9 0.2

ω3 1.1 0.3

ω4 0.7 0.4

Ignore the last column for now; the global inaccuracy of cr in each possible
world is reported in the middle column. We can see there that cr is most
accurate if ω4 is the actual world; on the other hand, ω1 gives cr the highest
inaccuracy.

Clearly the global inaccuracy of ω4 depends on which possible world is
actual. But what if I’m uncertain which world is actual? Then I might
calculate the value I expect for cr’s inaccuracy. After all, the inaccuracy of
a credence distribution is a numerical quantity, and just like any numerical
quantity I may calculate my expectation for its value. Let’s suppose my
credences are the distribution cr1 shown in the final column of the table
above. So I am least confident that world ω1 is actual, and most confident
that world ω4 is actual. My expectation for the global inaccuracy of cr is

EIpcrq “

Ipcr, ω1q ¨ cr1pω1q ` Ipcr, ω2q ¨ cr1pω2q ` Ipcr, ω3q ¨ cr1pω3q ` Ipcr, ω4q ¨ cr1pω4q

“ 1.3 ¨ 0.1` 0.9 ¨ 0.2` 1.1 ¨ 0.3` 0.7 ¨ 0.4 “ 0.92

(10.5)

For each world, I calculate how inaccurate cr would be in that world and
multiply by my credence cr1 that that world is actual.13 I then sum the
results across all four worlds. Notice that because I’m more confident in,
say, worlds ω2 and ω4 than I am in worlds ω1 and ω3, the former worlds
have more influence on my expected inaccuracy calculation.

In general, if my credence distribution is cr1 and the finite set of worlds
under consideration is ω1, ω2, . . . , ωn, I can calculate my expected inaccuracy
for any distribution cr as follows:

EIpcrq “ Ipcr, ω1q¨cr1pω1q`Ipcr, ω2q¨cr1pω2q` . . .`Ipcr, ωnq¨cr1pωnq (10.6)

This equation generalizes the expected inaccuracy calculation of Equation
(10.5) above.14

Warning: We are discussing the epistemic goal of minimizing ex-
pected inaccuracy, where inaccuracy is a feature of credence distri-
butions that can be measured numerically. Some authors prefer to
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discuss credence distributions’ epistemic utility, a numerical mea-
sure of epistemic value whose expectation rational agents maximize.
Perhaps there are many aspects of a credence distribution that make
it epistemically valuable or disvaluable. But many authors work un-
der the assumption that accuracy is the sole determiner of a distribu-
tion’s epistemic value, in which case that value can be calculated di-
rectly from the distribution’s inaccuracy. (The simplest way is to let
the epistemic utility of distribution cr in world ω equal 1´ Ipcr, ωq.)
When reading about accuracy arguments, be sure to notice whether
the author asks agents to minimize inaccuracy or maximize utility.
On either approach, the best credence is the one closest to the pin
(in this case, the distribution tv). But with inaccuracy, as in golf,
lowest score wins.

Equation 10.6 allows me to calculate my expected inaccuracy for any
credence distribution, probabilistic or otherwise. If I wanted, I could even
calculate an expectation for the global inaccuracy of my own credence dis-
tribution. (To do so, I simply replace cr with cr1 throughout the equation.)
But this is a fraught calculation to make. When I calculate my expected
inaccuracy for my own current credences and compare them to the inaccu-
racy I expect for someone else’s credences, I might find that I expect that
other distribution to be less inaccurate than my own. We will say that one
credence distribution defeats another in expectation if the latter assigns
a lower expected inaccuracy to the former than it does to itself.

When an agent’s credences are defeated in expectation by another dis-
tribution, she faces the same kind of “instability” we encountered with our
weather forecaster—except this time the instability is coming from expected
accuracy considerations rather than calibration measurements. If an agent’s
credence distribution leads her to expect that some other distribution is
more accurate than her own, then (as far as minimizing expected inaccu-
racy goes) she will wish she had that other distribution instead of her own.
The following norm rules out this kind of instability for rational credence
distributions:

Permissibles Not Defeated: If an agent’s credence distribution is ratio-
nally permissible, and she measures inaccuracy with an acceptable
scoring rule, she will not expect any other distribution to be more
accurate than her own.

Sometimes in epistemology we find a doxastic position that takes itself to
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be better than other views; this doesn’t mean it’s a correct or even rational
position. If you believe there’s a material world, you will take your own
beliefs to be more accurate than those of the skeptic, but that doesn’t entail
that you’re doing better than the skeptic in any significant sense. Yet if a
particular doxastic position takes itself to be worse than other views, this
seems to be a serious flaw. James M. Joyce writes,

If, relative to a person’s own credences, some alternative system
of beliefs has a lower expected epistemic [inaccuracy], then, by
her own estimation, that system is preferable from the epistemic
perspective. This puts her in an untenable doxastic situation.
She has a prima facie epistemic reason, grounded in her beliefs,
to think that she should not be relying on those very beliefs.
This is a probabilistic version of Moore’s paradox. Just as a ra-
tional person cannot fully believe “X but I don’t believe X,” so
a person cannot rationally hold a set of credences that require
her to estimate that some other set has higher epistemic util-
ity. [This] person is. . . in this pathological position: her beliefs
undermine themselves. (2009, p. 277)

Permissibles Not Defeated rules out such pathological distributions.
Yet Permissibles Not Defeated can also be used to rule out certain scoring

rules. In some cases a credence distribution that is perfectly rationally
permissible will look unstable if we assess it using the wrong scoring rule.
Suppose I tell you I’m about to roll a fair die. You entertain six propositions,
one for each possible outcome of the roll, and let’s imagine that you assign
each of those propositions a credence of 1{6. (In other words, crp1q “
crp2q “ crp3q “ crp4q “ crp5q “ crp6q “ 1{6.) I submit that this is at least a
rationally permissible distribution in your situation.

But let’s see what happens if, besides having this perfectly permissible
credence distribution, you also use the absolute-value scoring rule to assess
accuracy. You entertain six possible worlds—let’s call them ω1 through ω6,
with the subscripts indicating how the roll comes out in a given world. In
world ω1, the roll comes out 1, so tvp1q “ 1 while crp1q “ 1{6, so by the
absolute-value rule your local inaccuracy for the proposition that the roll
comes out 1 is |tvp1q ´ crp1q| “ |1 ´ 1{6| “ 5{6. On the other hand, your
local inaccuracy in world ω1 for the proposition that the roll comes out 2 is
|tvp2q ´ crp2q| “ |0´ 1{6| “ 1{6. In ω1 you’ll have the same inaccuracy for
each of the other four propositions about how the roll might’ve come out, so
your total, global inaccuracy in ω1 will be 5{6`1{6`1{6`1{6`1{6`1{6 “
10{6. A bit of reflection shows that you’ll have the same global inaccuracy
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score in each of the 6 possible worlds you entertain, so by Equation (10.6)
your expected global inaccuracy (for your own credence distribution) will
be 10{6.

Now consider your crazy friend Ned, who in light of the same evidence
assigns credence 0 to each one of the six roll-outcome propositions. (So
crN p1q “ crN p2q “ crN p3q “ crN p4q “ crN p5q “ crN p6q “ 0.) Let’s calcu-
late how inaccurate you expect Ned to be. In ω1, tvp1q “ 1 while crN p1q “ 0,
so Ned’s inaccuracy for the proposition that the roll comes out 1 is |1´0| “ 1.
Yet in that world tvp2q “ 0 and crN p2q “ 0, so Ned’s inaccuracy for the
proposition that the roll comes out 2 is 0. Similarly for propositions 3, 4,
5, and 6. So Ned’s total inaccuracy in world ω1 is 1. A bit of reflection
shows that Ned’s total inaccuracy in each of the six worlds will be 1, so your
expected global inaccuracy for him will be 1 as well. By your own lights,
you expect crazy Ned to be more accurate than you are!

So if we calculate inaccuracy using the absolute-value rule, your cre-
dence distribution turns out to be defeated in expectation by Ned’s. Yet
Ned’s distribution isn’t better than yours in any epistemic sense—in fact,
the Principal Principle would say that your distribution is rationally re-
quired while his is rationally forbidden! Something has gone wrong, and it
isn’t the credences you assigned. Instead, it’s the scoring rule you used to
assess your credences and Ned’s. The absolute-value scoring rule is often
thought to be an unacceptable scoring rule, precisely on the grounds that
it can make distributions like crazy Ned’s look better than your own. If we
had calculated the expected inaccuracies using the Brier score instead, we
would not have obtained this result. (See Exercise ??.)

In this example the absolute-value rule and the Brier score are repre-
sentative of two much broader classes of scoring rules, distinguished by the
following definition:

Strictly Proper Scoring Rule: An agent with a probabilistic credence
distribution who uses a strictly proper scoring rule will take her-
self to defeat in expectation every other distribution.

That is, if an agent assigns credences over a set of propositions that satisfy
the probability axioms, and she assesses accuracy using a strictly proper
scoring rule, she will always calculate her own distribution to have a lower
expected inaccuracy than that of any other distribution over the same set
of propositions. The absolute-value scoring rule is not strictly proper. In
the example above, your credence distribution over possible roll outcomes
satisfies the probability axioms. Yet if you use the absolute-value rule, there
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is another distribution (Ned’s) that you expect to be more accurate than
your own.

The Brier score, on the other hand, is a strictly proper scoring rule. An
agent with a probabilistic distribution who uses the Brier score will never
take another distribution to defeat her own in expectation. In fact, the news
is even better than that: A probabilistic agent who uses the Brier score will
always expect herself to do better with respect to accuracy than any other
distribution she considers. The Brier score is not the only scoring rule with
this feature. Just for the sake of illustration, here’s another local inaccuracy
function that generates a strictly proper scoring rule:

ipcrpXq, tvpXqq “ ´ logp1´ |tvpXq ´ crpXq|q (10.7)

The distinction between strictly proper scoring rules and other scoring
rules is sometimes explained in terms of credence elicitation. Suppose
we’re going to pay a weather forecaster’s pay in proportion to the accuracy
of her reports. If we assess her accuracy using an improper scoring rule
(like the absolute-value score), and if her credences satisfy the probability
axioms, then there will be cases in which by her own lights she expects to
be more accurate if she reports something other than her own credences. So
we’ll have incentivized her to make on-air reports that don’t reflect what
she truly thinks will happen. On the other hand, if we want to encourage
probabilistic agents to report the credences they actually assign, a good
strategy is to reward or punish them based on a strictly proper scoring
rule.15

We now know enough about strictly proper scoring rules to argue that
they are acceptable measures of gradational accuracy while improper rules
are not. Strictly proper scoring rules have traditionally been favored because
of something like the following argument:

Argument that Only Strictly Proper Scoring Rules are Acceptable

(Premise 1) On an acceptable scoring rule, no rationally permissible credence dis-
tribution can be defeated in expectation.

(Premise 2) Credence distributions that satisfy the probability axioms are ratio-
nally permissible.

(Definition) If a scoring rule is improper, it allows credence distributions satisfying
the probability axioms to be defeated in expectation.

(Conclusion) Only strictly proper scoring rules are acceptable.
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We will return to the details of this argument later; just to locate it in the
context of the present discussion: Premise 1 is a rewording of Permissibles
Not Defeated. The step I’ve called “Definition” comes from the definition
of a strictly proper scoring rule. The argument concludes that we should
always use strictly proper scoring rules in assessing the accuracy of credence
distributions.

10.2 Joyce’s accuracy argument for probabilism

It’s bad enough when an agent expects another agent’s distribution to be
more accurate than her own—she may be more accurate than her rival in
some worlds, less accurate in others, but on balance she expects to lose out.
But it’s even worse when an agent discovers that another distribution accu-
racy dominates her own. One credence distribution accuracy dominates
another when the first is more accurate than the second in every possible
world. Being defeated in expectation by another distribution is kind of like
having a twin sister who takes all the same classes as you but has a better
GPA. Being accuracy dominated is like that twin sister’s getting a better
grade than you in every single class.16

We already said that relative to an acceptable scoring rule no rationally
permissible credence distribution should ever be defeated in expectation
(that was our Permissibles Not Defeated rule). That rule straightforwardly
entails

Permissibles Not Dominated: If an agent’s credence distribution is ra-
tionally permissible, and she measures inaccuracy with an accept-
able scoring rule, no other distribution will be more accurate than
her own in every possible world.

If a distribution accuracy dominates the agent’s, it will also have a lower
expected inaccuracy than her distribution (because it will have a lower ac-
curacy in each possible world). So being accuracy dominated is one way (a
particularly extreme way) of being defeated in expectation. Permissibles Not
Defeated says that permissible credence distributions are never defeated in
expectation; this entails that they are also never dominated. So Permissibles
Not Dominated is simply a consequence of what we’ve already assumed.

Repurposing a theorem of de Finetti’s (1974), Joyce (1998) demonstrated
the

Gradational Accuracy Theorem: Given a credence distribution cr over
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a finite set of propositions X1, X2, . . . , Xn, if we measure inaccu-
racy Ipcr, ωq by the Brier score then:

• If cr does not satisfy the probability axioms, there exists a
probabilistic distribution cr1 such that Ipcr1, ωq ă Ipcr, ωq in
every logically possible world ω; and

• If cr does satisfy the probability axioms, no such cr1 exists.

The Gradational Accuracy Theorem has two parts. The first part says
that if an agent has a non-probabilistic credence distribution cr, we will
be able to find a probabilistic distribution cr1 that accuracy dominates cr.
No matter what the world is like, distribution cr1 is guaranteed to be less
inaccurate than cr. So the agent with distribution cr can be certain that,
come what may, she is leaving a certain amount of accuracy on the table by
assigning cr rather than cr1. There’s a cost in accuracy, independent of what
you think the world is like and therefore discernible a priori, to assigning a
non-probabilistic credence distribution—much as there’s a guaranteed accu-
racy cost to assigning logically inconsistent beliefs. On the other hand (and
this is the second part of the theorem), if an agent’s credence distribution is
probabilistic then no distribution is more accurate in every possible world.
This seems a strong advantage of probabilistic credence distributions.17

Predd et al. (2009) showed that a similar Gradational Accuracy Theorem
can be proven for any strictly proper scoring rule (not just the Brier score).
Proving the second part of the theorem is difficult, but I will illustrate how
the first part can be proven for the Brier Score. There are three probability
axioms—Non-Negativity, Normality, and Finite Additivity—so we need to
show how violating each one leaves a distribution susceptible to accuracy
domination. We’ll take them one at a time, in order.

Suppose credence distribution cr violates Non-Negativity by assigning
some proposition a negative credence. In Figure 10.4 I’ve imagined that cr
assigns credences to two propositions, X and Y , bearing no special logical
relations to each other. cr violates Non-Negativity by assigning crpXq ă 0.
(The value of crpY q is irrelevant to the argument, but I’ve supposed it lies
between 0 and 1.) We introduce probabilistic cr1 such that cr1pY q “ crpY q
but cr1pXq “ 0; cr1 is the closest point on the Y -axis to distribution cr.
Clearly cr1 is closer to ω2 and ω4 than cr is, so by the Brier score (reflecting
distance as the crow flies) cr1 is less inaccurate than cr relative to both ω2

and ω4.

What if ω3 is the actual world? I’ve indicated the distances from cr and
cr1 to ω3 with arrows. Because cr1 is the closest point on the Y -axis to cr,
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Figure 10.4: Violating Non-Negativity

ω1:p0, 0q ω2:p1, 0q

ω4:p1, 1qω3:p0, 1q

X

Y

cr cr1

the points cr, cr1, and ω3 form a right triangle. The arrow from cr to ω3

is the hypotenuse of that triangle, while the arrow from cr1 to ω3 is a leg.
So the latter must be shorter, and cr1 is less inaccurate by the Brier score
relative to ω3. A parallel argument shows that cr1 is less inaccurate relative
to ω1. So cr1 is less inaccurate than cr relative to each possible world.

That takes care of Non-Negativity.18 The accuracy argument against
violating Normality is depicted in Figure 10.5. Suppose X is a tautology
and cr assigns it some value other than 1. Since X is a tautology, there are
no logically possible worlds in which it is false, so we need consider only the
possible worlds marked as ω2 and ω4 in the diagram. We construct cr1 such
that cr1pY q “ crpY q and cr1pXq “ 1. cr1 is closer than cr to ω4 because the
arrow from cr to ω4 is the hypotenuse of a right triangle of which the arrow
from cr1 to ω4 is one leg. A similar argument shows that cr1 is closer than
cr to ω2, demonstrating that cr1 is less inaccurate than cr in every logically
possible world.

Explaining how to accuracy-dominate a Finite Additivity violator re-
quires a three-dimensional argument sufficiently complex that I will leave
it for an endnote.19 But we can show in two dimensions what happens if
you violate one of the rules that follows from Finite Additivity, namely our
Negation rule. Suppose your credence distribution assigns cr-values to two
propositions X and Y such that Y is the negation of X. If you violate
Negation, you’ll have crpXq ‰ 1´ crpY q.
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Figure 10.5: Violating Normality

ω2:p1, 0q

ω4:p1, 1q

X

Y

cr cr1

Figure 10.6: Violating Negation

ω2:p1, 0q

ω3:p0, 1q

X

Y

cr

cr1
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I’ve depicted only ω2 and ω3 in Figure 10.6 because only those two worlds
are logically possible (since X and Y must have opposite truth-values). The
diagonal line connecting ω2 and ω3 has the equation Y “ 1´X; it contains
all the credence distributions satisfying Negation. If cr violates Negation,
it will fail to lie on this line. Then we can accuracy-dominate cr with the
point closest to cr lying on that diagonal line (call that point cr1). Once
more, we’ve created a right triangle with cr, cr1, and world ω3. The arrow
representing the distance from cr to ω3 is the hypotenuse of this triangle,
while the arrow from cr1 to ω3 is its leg. So cr1 has the shorter distance, and
if ω3 is the actual world cr1 will be less inaccurate than cr according to the
Brier score. A parallel argument applies to ω2, so cr1 is less inaccurate than
cr in each of the two logically possible worlds.20

Joyce (1998, 2009) leverages the advantage of probabilistic credence dis-
tributions displayed by the Gradational Accuracy Theorem into an argument
for probabilism:

Gradational Accuracy Argument for Probabilism

(Premise) On an acceptable scoring rule, no rationally permissible credence dis-
tribution can be accuracy dominated.

(Result) Only strictly proper scoring rules are acceptable.

(Theorem) On a strictly proper scoring rule, any non-probabilistic credence dis-
tribution can be accuracy dominated.

(Conclusion) All rationally permissible credence distributions satisfy the probability
axioms.

In this argument, “Premise” is Permissibles Not Dominated. “Result” comes
from the previous section’s argument that only strictly proper scoring rules
are acceptable. “Theorem” is the Gradational Accuracy Theorem. And the
conclusion of this argument is Probabilism.

10.2.1 An objection to this argument

Unlike representation theorem and Dutch Book arguments, the Gradational
Accuracy Argument for Probabilism has nothing to do with an agent’s
decision-theoretic preferences over practical acts. It clearly pertains to the
theoretical rationality of credences assigned in pursuit of an epistemic goal:
accuracy. (This is why Joyce’s original 1998 paper was titled “A Nonprag-
matic Vindication of Probabilism”.) So the argument is not susceptible to
one of the complaints we made against those alternatives.
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It may, however, be susceptible to our Linearity In, Linearity Out con-
cern. As I’ve framed the Gradational Accuracy Argument, its second step
rules out improper scoring rules. As I noted above, one can argue for this
step via our Argument that Only Strictly Proper Scoring Rules are Accept-
able. Yet Premise 2 of that latter argument states that “Credence distribu-
tions that satisfy the probability axioms are rationally permissible.” At least
as I’ve reconstructed the arguments, they run like this: Start by assuming
that probabilistic credence distributions are rationally permissible. Use that
assumption to restrict our attention to strictly proper scoring rules. Having
restricted ourselves to strictly proper scoring rules, use them to argue that
probabilism is rationally required.

Isn’t this somewhat circular? Admittedly, the premise we started with
(that probabilistic credences are permitted) is weaker than the conclusion
with which we ended (that probabilistic credences are required). Still, we’re
assuming something about the rationality of probabilism in order to prove
something about the rationality of probabilism. Sounds like Linearity In,
Linearity Out to me.

In offering various accuracy-based arguments for probabilism, Joyce has
been well aware of this concern. Originally in his (1998) he selected the Brier
score over the absolute-value score not on grounds of propriety but instead
on the grounds that Brier evinced a number of appealing formal proper-
ties. Joyce showed that any scoring rule displaying those properties would
leave non-probabilistic credence distributions accuracy-dominated, allowing
us to run a version of the Gradational Accuracy Argument for Probabil-
ism. Maher (2002), however, argued that these properties were implausible
as requirements on rationally-acceptable scoring rules, and defended the
absolute-value score. So Joyce (2009) shifted tactics, and ran his argument
based on our Premise 2.21

Premise 2 is stated somewhat ambiguously in the Argument that Only
Strictly Proper Scoring Rules are Acceptable—what exactly does it have to
say for that argument to work? We don’t need to maintain that in any situa-
tion, any probabilistic credence distribution would be rationally permissible
to assign. Only an extreme Subjective Bayesian (Section 5.1.2) who main-
tained the Regularity Principle would agree to such a premise; it would be
rejected by anyone who believed in further synchronic constraints beyond
the probability axioms (such as the Principal Principle) or believed that an
agent could receive evidence that rationally required her to be certain of
particular propositions. What we do need is the claim that for any language
L and any probabilistic credence distribution over L, there exists some situ-
ation in which it would be rationally permissible for an agent to assign that
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distribution over that language.
Given this premise, the argument against improper scoring rules runs

as follows: Take an arbitrary improper scoring rule, and suppose for re-
ductio that it’s acceptable for determining rational permissibility. By the
definition of impropriety, some probabilistic distribution will be defeated
in expectation on that rule. This type of defeat is recognizable a priori,
and is independent of the particulars of an agent’s situation. So now go
to the situation (whose existence is guaranteed by our premise) in which
that distribution is rationally permissible. By supposition the distribution
is defeated in expectation on the (acceptable) improper scoring rule, so by
Expected Inaccuracy Permissiblity it is not rationally permissible. But we
said the distribution in question was rationally permissible in this situation,
so we have a contradiction.

Now that we’ve understood what Premise 2 says, how might we defend
it in a fashion that doesn’t beg the question in an argument for proba-
bilism? Joyce argues that for any probabilistic credence distribution, we
could imagine a situation in which an agent is rationally certain that those
credence values reflect the objective chances of the propositions in ques-
tion. By the Principal Principle, the relevant credence distribution would
then be rationally required. Hájek (2009a) responds that many languages
over which probabilistic distributions are assigned contain propositions that
couldn’t possibly have objective chances. (For instance, propositions about
the physical laws that give rise to objective chances.) For such a proposition,
it wouldn’t be rational for an agent to be certain that her credence equalled
the objective chance, so Joyce’s argument wouldn’t establish the rational
permissibility of the probabilistic distribution in question.

Yet there’s a much more general way of attacking the assumption that
any probabilistic credence distribution could be rationally permissible un-
der the right conditions. Recall our characters Mr. Prob, Mr. Bold, and
Mr. Weak. Mr. Prob satisfies the probability axioms, while Mr. Bold vi-
olates Finite Additivity by having his credence in each proposition be the
square-root of Mr. Prob’s credence in that proposition. Mr. Bold happily
assigns a higher credence to every uncertain proposition than Mr. Prob does.
In arguing for probabilism, we look to establish that Mr. Bold’s (and Mr.
Weak’s) credences are rationally forbidden. If we could establish that ratio-
nal credences match the numerical values of known frequencies or objective
chances, then Mr. Bold’s distribution could be ruled out immediately, be-
cause frequencies and chances must be additive.22 But part of Mr. Bold’s
boldness is that even when he and Mr. Prob are both certain that a partic-
ular proposition has a particular nonextreme chance, he’s willing to assign
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that proposition a higher credence than its chance value. Mr. Bold is will-
ing to be even more confident of a given experimental outcome than its
numerical chance!

The accuracy argument for probabilism requires Mr. Bold to be a bit
more aggressive than we’ve noted in the past. Before Mr. Bold might have
allowed that both his approach and Mr. Prob’s are rationally permissible.
But now we’ve seen that if Mr. Bold grants that probabilistic distributions
are generally permissible, this premise underwrites an argument that prob-
abilistic distributions are always required. So Mr. Bold must now main-
tain that his kind of response to evidence about chances—setting credences
greater than the chance values themselves—is the only rationally permissi-
ble response. While we might intuitively think this approach is crazy, the
accuracy-based argument for probabilism is question-begging against it.

10.2.2 Do we really need Finite Additivity?

[HERE I WILL DISCUSS THE LINDLEY PAPER]

10.3 An accuracy argument for Conditionalization

Arguing for probabilism on non-circular accuracy-based grounds turns out
to be difficult. But if you’ve already accepted probabilism, a remarkable
accuracy-based argument for updating by Conditionalization becomes avail-
able. The relevant result was proven by Hilary Greaves and David Wallace
(2006).23 We start by restricting our attention to strictly proper scoring
rules. Doing so is non-circular in this context, because we imagine that
we’ve already accepted probabilism as rationally required. This lets us ap-
peal to the credence-elicitation features of proper rules, as in the Argument
that Only Strictly Proper Scoring Rules are Acceptable.

Greaves and Wallace think of Conditionalization as a plan one could
adopt for how to change one’s credences in response to one’s future evidence.
Imagine we have an agent at time ti with probabilistic credence distribution
cri, who is certain she will gain some evidence before tj . Imagine also that
there’s a finite partition of propositions E1, E2, . . . , En in L such that the
agent is certain the evidence gained will be a member of that partition. The
agent can then form a plan for how she intends to update—she says to her-
self, “If I get evidence E1, I’ll update my credences to such-and-such”; “If I
get evidence E2, I’ll update my credences to so-and-so”; etc. In other words,
an updating plan is a function from members of the evidence partition to crj
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distributions she would assign in response to receiving that evidence. Con-
ditionalization is the plan that directs an agent receiving partition member
Em as evidence between ti and tj to set crjp¨q “ crip¨ |Emq.

Greaves and Wallace next show how the agent can calculate the ex-
pected inaccuracy of each available plan24 from her point of view at t1. The
calculation proceeds in six steps:

1. Pick a possible world ω to which the agent assigns non-zero credence
at ti.

2. Figure out which member of the partition E1, E2, . . . , En the agent
will receive as evidence between ti and tj if ω turns out to be the
actual world. (This will always be possible because possible worlds
are maximally specified.) We’ll call that piece of evidence E.

3. Take the updating plan being evaluated and figure out what credence
distribution it recommends to the agent if she receives evidence E
between ti and tj . This is the credence distribution the agent will
assign at tj if ω is the actual world and she follows the plan in question.
We’ll call that distribution crj .

4. Whichever scoring rule we’ve chosen (among the strictly proper scoring
rules), use it to determine the inaccuracy of crj if ω is the actual world.
(In other words, calculate Ipcrj , ωq.)

5. Multiply that inaccuracy value by the agent’s ti credence that ω is the
actual world. (In other words, calculate cripωq ¨ Ipcrj , ωq.)

6. Repeat this process for each world to which the agent assigns positive
credence at ti, then sum the results.

This calculation has the ti agent evaluate an updating plan by determining
what crj distribution that plan would recommend in a particular possible
world. She assesses the recommended distibution’s accuracy in that world,
weighting the result by her confidence that the world in question will obtain.
Repeating this process for each possible world and summing the results, she
develops an overall expectation of how accurate her tj credences will be if
she implements the plan.

Greaves and Wallace go on to prove the following theorem:

Accuracy Updating Theorem: Given any strictly proper scoring rule,
probabilistic distribution cri, and evidential partition in L, a ti
agent who calculates expected inaccuracies as described above will
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find Conditionalization more accurate than any updating plan
that recommends different credences at tj .

The Accuracy Updating Theorem demonstrates that from her vantage point
at ti, an agent with probabilistic credences and a strictly proper scoring rule
will expect to be most accurate at tj if she updates by Conditionalization.
Given a principle something like Permissibles Not Defeated for updating
plans, we can use this result to argue that no updating plan deviating from
Conditionalization is rationally acceptable.

But does this argument show that the agent is rationally required to
update by Conditionalization between ti and tj? If she’s interested in mini-
mizing expected inaccuracy, then at ti she should certainly plan to update
by conditionalizing—of all the updating plans available to the agent at ti,
she expects Conditionalization to be most accurate. Yet being required to
make a particular plan is different from being required to implement it. At
tj the agent may remember what she planned at ti, but why should the tj
agent do what her ti self thought best? Among other things, the tj agent
has more evidence than her ti self did.

This is the same problem we identified in Chapter 9 for diachronic Dutch
Strategy arguments. The Accuracy Updating Theorem establishes a syn-
chronic point about which policy an accuracy-concerned ti agent will hope
her tj self applies. But absent a substantive premise that agents are ratio-
nally required later to honor their earlier plans, we cannot move from this
synchronic point to a genuinely diachronic norm like Conditionalization.

Notes

1In discussions about internalism versus externalism in epistemology (whether it be
access internalism, mentalism, or some other version), rationality is often taken to be an
internalist normative category. So how can we argue to rational consistency norms from
an externalist standard like accuracy? The key is the a priori nature of the considerations
presented to the agent; without knowing anything empirical about the world, an agent with
logically inconsistent beliefs is in a position to know that at least some of the propositions
she believes are false. She need not ascertain any facts about reliability or anything else
not internally available in order to come to this conclusion.

2See the Further Readings for criticisms of accuracy arguments on the grounds that
they are teleological.

3There’s also been some interesting empirical research on how well-calibrated agents’
credences are in the real world. A robust finding is that people tend to be overconfident
in their opinions—only, say, 70% of the propositions to which they assign credence 0.9
turn out to be true. For a survey of the literature see (Lichtenstein, Fischoff, and Phillips
1982).



292 NOTES

4See (Murphy 1973)—and notice that the author is himself a meteorologist! Like
so many notions in probabilism, the idea of calibration as accuracy was hinted at in
Ramsey. In the latter half of his (1931), Ramsey asks what it would be for credences
“to be consistent not merely with one another but also with the facts.” (p. 93) He later
writes, “Granting that [an agent] is going to think always in the same way about all yellow
toadstools, we can ask what degree of confidence it would be best for him to have that
they are unwholesome. And the answer is that it will in general be best for his degree
of belief that a yellow toadstool is unwholesome to be equal to the proportion of yellow
toadstools which are in fact unwholesome.” (p. 97)

5This example is taken from (Joyce 1998).
6It’s sweeps week.
7Here’s another, related problem for calibration as a measure of accuracy: an agent

who assigns credences over a partition of n propositions can guarantee herself a perfect
calibration score (in every possible world!) by always assigning each proposition a credence
of 1{n. Depending on how you feel about the Principle of Indifference (Section 5.3), this
might be a reasonable assignment when the agent has no evidence relevant to the members
of the partition. But even if she receives ample evidence favoring one partition member
over others (perhaps she’s rolling a die that she knows to be biased), calibration will
continue to consider her perfect if she continues to assign 1{n to each member.

8Compare the practice in statistics of treating a proposition as a dichotomous random
variable with value 1 if true and 0 if false.

9Notice that we’re keeping the numerical values of the distribution cr constant as
we measure inaccuracies relative to different possible worlds. Ipcr, ωq doesn’t somehow
measure the inaccuracy in world ω of the credence distribution the agent would have had
in that world. Instead, given a particular credence distribution cr of interest to us, we will
use Ipcr, ωq to measure how inaccurate that very numerical distribution is relative to each
of a number of distinct possible worlds.

10While different i-functions yield different scoring rules, notice that our definition of
I in terms of i causes all scoring rules to have certain features in common. First, while
Ipcr, ωq is in some sense a global measure of the inaccuracy of cr in world ω, it doesn’t
take into account any wholistic or interactive features among the individual credences
cr assigns. The inaccuracy of cr with respect to proposition Xj is calculated strictly in
terms of the truth-value of Xj ; the results are then summed across the Xj . So no possible
interactions or comparisons between the cr-values assigned to distinct Xj are taken into
account. Second, the i-value of each Xj contributes equally to the sum Ipcr, ωq. One might
think that in certain circumstances some Xj are much more important to be accurate
about than others. That would suggest weighting the disparate i-values before summing,
in contrast to the strict equaniminty imposed by I.

11Named after George Brier—another meteorologist!—who discussed it in his (1950).
12The dashed elements are like contour lines on a topographical map. There, every

dashed point on a given contour line lies at the same altitude. Here, every dashed point
has the same inaccuracy relative to world ω4.

13Strictly speaking ω1 is a world, not a proposition, so cr1 doesn’t assign it a value. Here
I’m employing the convention that “cr1pω1q” is the credence that distribution cr1 assigns
to the proposition that ω1 is the actual world.

14Readers familiar with decision theory (perhaps from Chapter 7) may notice that the
expected-inaccuracy calculation of Equation (10.6) strongly resembles Savage’s formula
for calculating expected utilities. Here a “state” is a possible world ωi that might be
actual, an “act” is assigning a particular credence distribution cr, and an “outcome” is
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the inaccuracy that results if ωi is actual and one assigns cr. Savage’s expected utility
formula was abandoned by Jeffrey because it yielded implausible results when states and
acts were not independent. Might we have a similar concern about Equation (10.6)? What
if the act of assigning a particular credence distribution is not independent of the state that
a particular one of the ωi obtains? Should we move to a Jeffrey-style expected inaccuracy
calculation, and perhaps from there to some analogue of Causal Decision Theory? As of
this writing, this question is only just beginning to be explored in the accuracy literature,
in articles such as (Greaves 2013) and (Konek and Levinstein ms).

15(Joyce 2009, p. 266) reports that “The term ‘scoring rule’ comes from economics,
where values of [I] are seen as imposing penalties for making inaccurate probabilistic
predictions.”

By the way, one sometimes sees “strictly proper” scoring rules distinguished from
“proper” scoring rules. Relative to a proper scoring rule, any probabilistic distribution
expects itself to do at least as well as other distributions with respect to accuracy. On
a strictly proper score, a probabilistic distribution will expect itself to do better than
every other distribution. If we evaluate the probabilistic weather forecaster using a proper
scoring rule rather than a strictly proper one, she will have no incentive to report a
distribution other than her own, but she sometimes won’t see any harm in doing so.
With a strictly proper rule, she will always see an advantage in reporting her credences
accurately. Though distinguishing propriety from strict propriety would require slightly
rewording some of the arguments that follow, I’m mainly interested in the general structure
of those arguments. So I won’t bother with the relevant subtleties here.

16Like the distinction between propriety and strict propriety, a distinction is sometimes
drawn between “strong” and “weak” accuracy domination. cr1 strongly dominates cr just
in case cr1 is less inaccurate than cr in every possible world. cr1 weakly dominates cr if
cr1 does at least as well as cr with respect to accuracy in every world and better than cr
in at least one world. All of my references to “accuracy dominance” in what follows will
be references to strong accuracy dominance. For discussion of proving the results of this
section using the concept of weak accuracy dominance, see (Schervish, Seidenfeld, and
Kadane 2009).

17The second part of the Gradational Accuracy Theorem stands to the first part much
as the Converse Dutch Book Theorem stands to the Dutch Book Theorem (Chapter 9).

18Notice that a similar argument could be made for any cr lying outside the square
defined by ω1, ω2, ω3, and ω4. So this argument also shows how to accuracy dominate a
distribution that violates our Maximum rule.

Now one might wonder why we need an argument that credence-values below 0 or
above 1 are irrational—didn’t we stipulate our scale for measuring degrees of belief such
that no value could ever fall outside that range? On some ways of understanding credence,
arguments for Non-Negativity are indeed superfluous. But one might define credences
purely in terms of their role in generating preferences (as discussed in Chapter 8) or in
sanctioning bets (as discussed in Chapter 9), in which case there would be no immediate
reason why a credence couldn’t take on a value below zero.

19Suppose you assign credences to three propositions X, Y , and Z such that X and Y
are mutually exclusive and Z )( X _ Y . We establish X-, Y -, and Z-axes, then notice
that only three points in this space represent logically possible worlds: p0, 0, 0q, p1, 0, 1q,
and p0, 1, 1q. The distributions in this space satisfying Finite Additivity all lie on the
plane passing through those three points. If your credence distribution cr violates Finite
Additivity, it will not lie on that plane. We can accuracy-dominate it with distribution cr1

that is the closest point to cr lying on the plane. If you pick any one of the three logically
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possible worlds (call it ω), it will form a right triangle with cr and cr1, with the segment
from cr to ω as the hypotenuse and the segment from cr1 to ω as a leg. That makes cr1

closer than cr to ω.
20To give the reader a sense of how the second part of the Gradational Accuracy Theorem

is proven, I will now argue that no point lying inside the box in Figure 10.6 and on the
illustrated diagonal may be accuracy dominated with respect to worlds ω2 and ω3. In
other words, I’ll show how satisfying Negation wards off accuracy domination (assuming
one measures inaccuracy by the Brier score).

Start with distribution cr1 in Figure 10.6, which lies on the diagonal and therefore
satisfies Negation. Imagine drawing two circles through cr1, one centered on ω2 and the
other centered on ω3. To improve upon the accuracy of cr1 in ω2, one would have to choose
a distribution closer to ω2 than cr1—in other words, a distribution lying inside the circle
centered on ω2. To improve upon the accuracy of cr1 in ω3, one would have to choose a
distribution lying inside the circle centered on ω3. But since cr1 lies on the line connecting
ω2 and ω3, those circles are tangent to each other at cr1, so there is no point lying inside
both circles. Thus no distribution is more accurate than cr1 in both ω2 and ω3.

21Joyce’s argument in his (2009) is structurally different from the arguments I’ve pre-
sented. He uses some mathematical results to establish probabilism from Coherent Admis-
sibility, the principle that no acceptable scoring rule allows any probabilistic distribution
to be accuracy-dominated. Joyce then argues for Coherent Admissibility on the grounds
of our Premise 2 and Permissibles Not Dominated. So his argument proceeds without
assuming Permissibles Not Defeated. Still, the crucial assumption I’m attacking (Premise
2) underlies both Joyce’s approach and the one I’ve presented.

22See note 5 in Chapter 5.
23For an alternative accuracy-based approach to updating, see (Leitgeb and Pettigrew

2010a,b).
24[ENDNOTE ABOUT G AND W’S NOTION OF AN “AVAILABLE PLAN”]


