PHIL 424: Take-Home Assignment

December 9, 2014 (**revised** on 12/21/14)

The following assignment may be completed as a make-up either for (a) people who missed the mid-term exam, or (b) people who missed a homework assignment. Please turn in complete and legible answers to each of these problems *at the final exam* (Monday, December 22, 2014 at 12pm, in our usual classroom).

1 Proving Three Theorems Algebraically

Prove the following three general facts about all probability ditributions $Pr(\cdot)$ — *algebraically*, using the following generic stochastic truth-table (STT) and variables a, ..., h.

P	Q	R	Pr(⋅)
Т	Т	Т	а
Т	Т	F	b
Т	F	Т	С
Т	F	F	d
F	Т	Т	е
F	Т	F	f
F	F	Т	g
F	F	F	h

- (i) If (a) Pr(P & Q) = 0, and (b) $Pr(P | P \lor Q) = Pr(Q | P \lor Q)$, then (c) Pr(P) = Pr(Q).
- (ii) If (a) Pr(P & R) = 0, and (b) $Pr(R | R \lor P) = \frac{1}{2}$, then (c) Pr(P) = Pr(R).
- (iii) If (a) $\Pr(P \& Q) = 0$, (b) $\Pr(P \& R) = 0$, (c) $\Pr(Q \& R) = 0$, (d) $\Pr(P \lor Q \lor R) = 1$, (e) $\Pr(P \mid P \lor Q) = \Pr(Q \mid P \lor Q)$, and (f) $\Pr(R \mid R \lor P) = \frac{1}{2}$, then (g) $\Pr(P) = \Pr(Q) = \Pr(R) = \frac{1}{3}$.

2 Verifying Three "Odd Properties" of Bayesian Confirmation

Consider the following probability model/STT.

A	В	C	$\Pr(\cdot)$
Т	Т	Т	$a = \frac{14}{80}$
Т	Т	F	$b = \frac{8}{80}$
Т	F	Т	$c = \frac{10}{80}$
Т	F	F	$d = \frac{8}{80}$
F	Т	Т	$e = \frac{1}{80}$
F	Т	F	$f = \frac{17}{80}$
F	F	Т	$g = \frac{15}{80}$
F	F	F	$h = \frac{7}{80}$

Prove that the following three "odd properties" of Bayesian confirmation are (simultaneously) satisfied by this (single) probability distribution (which is also an *urn model*).

(1) A confirms B and A confirms C, but A disconfirms $B \vee C$. That is:

(1.1)
$$Pr(B | A) > Pr(B)$$

(1.2)
$$Pr(C | A) > Pr(C)$$

(1.3)
$$Pr(B \vee C \mid A) < Pr(B \vee C)$$

(2) *A* confirms *B* and *A* confirms *C*, and *A* confirms *B* & *C*. That is:

$$(2.1) \Pr(B \& C \mid A) > \Pr(B \& C)$$

(3) *A* confirms *B* and *A* confirms *C*, and *A* confirms $B \equiv C$. That is:

(3.1)
$$Pr(B \equiv C \mid A) > Pr(B \equiv C)$$

3 Bonus (*Hard!*) Problem (worth 25% extra-credit)

Prove that *if* (a) *A* confirms *C* and (b) *B* confirms *C*, *then* (c) *either* $A \lor B$ confirms *C* or A & B confirms *C*. That is, prove that the following four constraints *cannot* be jointly satisfied by *any* probability distribution (using the STT and variables from the previous problem). Hint: suppose that (I)–(IV) *do* all hold, and then show this implies an *algebraic falsehood*.

(I)
$$Pr(C \mid A) > Pr(C)$$

(II)
$$Pr(C \mid B) > Pr(C)$$

(III)
$$Pr(C \mid A \lor B) \le Pr(C)$$

(IV)
$$Pr(C \mid A \& B) \leq Pr(C)$$