PHIL 424: Take-Home Assignment

December 9, 2014 (revised on 12/21/14)

The following assignment may be completed as a make-up either for (a) people who missed the mid-term exam, or (b) people who missed a homework assignment. Please turn in complete and legible answers to each of these problems at the final exam (Monday, December 22, 2014 at 12pm, in our usual classroom).

1 Proving Three Theorems Algebraically

Prove the following three general facts about all probability ditributions $\operatorname{Pr}(\cdot)$ - algebraically, using the following generic stochastic truth-table (STT) and variables a, \ldots, h.

P	Q	R	$\operatorname{Pr}(\cdot)$
T	T	T	a
T	T	F	b
T	F	T	c
T	F	F	d
F	T	T	e
F	T	F	f
F	F	T	g
F	F	F	h

(i) If (a) $\operatorname{Pr}(P \& Q)=0$, and (b) $\operatorname{Pr}(P \mid P \vee Q)=\operatorname{Pr}(Q \mid P \vee Q)$, then (c) $\operatorname{Pr}(P)=\operatorname{Pr}(Q)$.
(ii) If (a) $\operatorname{Pr}(P \& R)=0$, and (b) $\operatorname{Pr}(R \mid R \vee P)=\frac{1}{2}$, then (c) $\operatorname{Pr}(P)=\operatorname{Pr}(R)$.
(iii) If (a) $\operatorname{Pr}(P \& Q)=0$, (b) $\operatorname{Pr}(P \& R)=0$, (c) $\operatorname{Pr}(Q \& R)=0$, (d) $\operatorname{Pr}(P \vee Q \vee R)=1$, (e) $\operatorname{Pr}(P \mid P \vee Q)=$ $\operatorname{Pr}(Q \mid P \vee Q)$, and (f) $\operatorname{Pr}(R \mid R \vee P)=\frac{1}{2}$, then (g) $\operatorname{Pr}(P)=\operatorname{Pr}(Q)=\operatorname{Pr}(R)=\frac{1}{3}$.

2 Verifying Three "Odd Properties" of Bayesian Confirmation

Consider the following probability model/STT.

A	B	C	$\operatorname{Pr}(\cdot)$
T	T	T	$a=\frac{14}{80}$
T	T	F	$b=\frac{8}{80}$
T	F	T	$c=\frac{10}{80}$
T	F	F	$d=\frac{8}{80}$
F	T	T	$e=\frac{1}{80}$
F	T	F	$f=\frac{17}{80}$
F	F	T	$g=\frac{15}{80}$
F	F	F	$h=\frac{7}{80}$

Prove that the following three "odd properties" of Bayesian confirmation are (simultaneously) satisfied by this (single) probability distribution (which is also an urn model).
(1) A confirms B and A confirms C, but A disconfirms $B \vee C$. That is:
(1.1) $\operatorname{Pr}(B \mid A)>\operatorname{Pr}(B)$
(1.2) $\operatorname{Pr}(C \mid A)>\operatorname{Pr}(C)$
(1.3) $\operatorname{Pr}(B \vee C \mid A)<\operatorname{Pr}(B \vee C)$
(2) A confirms B and A confirms C, and A confirms $B \& C$. That is:
(2.1) $\operatorname{Pr}(B \& C \mid A)>\operatorname{Pr}(B \& C)$
(3) A confirms B and A confirms C, and A confirms $B \equiv C$. That is:
(3.1) $\operatorname{Pr}(B \equiv C \mid A)>\operatorname{Pr}(B \equiv C)$

3 Bonus (Hard!) Problem (worth 25\% extra-credit)

Prove that if (a) A confirms C and (b) B confirms C, then (c) either $A \vee B$ confirms C or A \& B confirms C. That is, prove that the following four constraints cannot be jointly satisfied by any probability distribution (using the STT and variables from the previous problem). Hint: suppose that (I)-(IV) do all hold, and then show this implies an algebraic falsehood.
(I) $\operatorname{Pr}(C \mid A)>\operatorname{Pr}(C)$
(II) $\operatorname{Pr}(C \mid B)>\operatorname{Pr}(C)$
(III) $\operatorname{Pr}(C \mid A \vee B) \leq \operatorname{Pr}(C)$
(IV) $\operatorname{Pr}(C \mid A \& B) \leq \operatorname{Pr}(C)$

