PHIL 424: Practice Final Exam

December 9, 2014

The actual final exam will have the same structure as this practice final. You will have 3 hours (Monday, December 22, 2014 from 12-3pm) to complete the actual exam. You are to answer all parts of all four problems - please make sure to turn in legible and complete answers to all parts. You may use a calculator.

1 Verifying a Conjunctive Fork

Consider the following probability model/stochastic truth-table (STT).

X	Y	Z	$\operatorname{Pr}(\cdot)$
T	T	T	$a=\frac{1}{4}$
T	T	F	$b=\frac{15}{256}$
T	F	T	$c=\frac{1}{128}$
T	F	F	$d=\frac{1}{16}$
F	T	T	$e=\frac{1}{4}$
F	T	F	$f=\frac{45}{256}$
F	F	T	$g=\frac{1}{128}$
F	F	F	$h=\frac{3}{16}$

Prove that $\{X, Y, Z\}$ form a conjunctive fork (in Reichenbach's sense). That is, prove that the following three facts obtain for this STT.

1. X and Z are positively correlated, i.e., $\operatorname{Pr}(X \mid Z)>\operatorname{Pr}(X)$.
2. Y and Z are positively correlated, i.e., $\operatorname{Pr}(Y \mid Z)>\operatorname{Pr}(Y)$.
3. Z screens-off X from Y, i.e., $\operatorname{Pr}(X \mid Y \& Z)=\operatorname{Pr}(X \mid Z)$.

First, translate the probabilistic definitions of facts (1)-(3) into algebraic expressions in terms of the variables a, \ldots, h. Then, plug-in the values of a, \ldots, h (in the STT above) into these algebraic expressions. Finally, thereby demonstrate that the 3 facts above obtain.

2 Proving Three Theorems From Confirmation Theory

Consider the following three Bayesian measures of the degree to which E confirms H :

$$
\begin{gathered}
s(H, E) \stackrel{\text { def }}{=} \operatorname{Pr}(H \mid E)-\operatorname{Pr}(H \mid \sim E) \\
r(H, E) \stackrel{\text { def }}{=} \frac{\operatorname{Pr}(H \mid E)-\operatorname{Pr}(H)}{\operatorname{Pr}(H \mid E)+\operatorname{Pr}(H)} \\
n(H, E) \stackrel{\text { def }}{=} \operatorname{Pr}(H \& E)-\operatorname{Pr}(H) \cdot \operatorname{Pr}(E)
\end{gathered}
$$

And, consider the following two symmetry properties for relevance measures c :

$$
\begin{aligned}
& \left(S_{1}\right) \mathfrak{c}(H, E)=-\mathfrak{c}(H, \sim E) \\
& \left(S_{2}\right) \mathfrak{c}(H, E)=\mathfrak{c}(E, H)
\end{aligned}
$$

Prove the following three theorems: (i) $s(H, E)$ satisfies (S_{1}), (ii) r satisfies (S_{2}), and (iii) $n(H, E)$ satisfies both $\left(S_{1}\right)$ and $\left(S_{2}\right)$. That is, prove (i) $s(H, E)=-s(H, \sim E)$, (ii) $r(H, E)=$ $r(E, H)$, and (iii) both $n(H, E)=-n(H, \sim E)$ and $n(H, E)=n(E, H)$. You are to complete these proofs algebraically, using the following variables a, \ldots, d to set-up your proofs.

E	H	$\operatorname{Pr}\left(s_{i}\right)$
T	T	a
T	F	b
F	T	c
F	F	d

3 Applying Bayes's Theorem \& Bayesian Confirmation Theory

There are 3 coins in a box. One is a two-headed coin; another is a fair coin; and the third is a biased coin that comes up heads 75% of the time. A coin is sampled at random from the box (this means that each of the three has the same probability of being drawn, and that the draw of the coin is independent of its subsequent flip), and then it is flipped. The coin comes up heads. Now, answer three questions:
(a) What is the probability that the coin flipped was the two-headed coin?
(b) Does the coin's having landed heads confirm or disconfirm (in the Bayesian/relevance sense) that the coin was the 75%-biased-in-favor-of-heads coin? Explain.
(c) Does the coin's having landed heads confirm or disconfirm that the coin was the fair coin? Explain.

Hints: Bayes's Theorem for a set of n mutually exclusive and exhaustive hypotheses $\left\{H_{i}\right\}$ has the following form:

$$
\operatorname{Pr}\left(H_{i} \mid E\right)=\frac{\operatorname{Pr}\left(E \mid H_{i}\right) \operatorname{Pr}\left(H_{i}\right)}{\operatorname{Pr}(E)}=\frac{\operatorname{Pr}\left(E \mid H_{i}\right) \operatorname{Pr}\left(H_{i}\right)}{\sum_{i=1}^{n} \operatorname{Pr}\left(E \mid H_{i}\right) \operatorname{Pr}\left(H_{i}\right)}
$$

Here, let $H_{1}=$ the coin is two-headed, $H_{2}=$ the coin is fair, $H_{3}=$ the coin is biased 75% in favor of heads, and $E=$ the coin landed heads on the toss. And, remember, confirmation means positive relevance and disconfirmation means negative relevance.

4 Explicating A Paradox/Problem

Pick one paradox/problem from the following list, and explain in your own words (1) what the problem/paradox is, and (2) what you take to the appropriate/best approach/response to the paradox/problem. Make your explications as complete and self-contained as possible.

- The Lottery Paradox
- The Raven Paradox
- The Problem of Old Evidence
- The Problem of the Reference Class
- The Intransitivity of Confirmation/Evidential Relevance

