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      2.1   Some Infi nite Sets   

 Some sets have infi nitely many members. 
 Think of the set of all the New Year’s Eves from here to eternity. 
 Or if you don’t believe in eternity, think of the set of all the spatial 

points between London and New York. (Since there will always be 
another point between any two distinct such points, there will be no 
end of them.) 

 Again, think of the set of all grammatical English sentences. (Since 
there is no word limit on the length of English sentences, we can 
always go on making longer sentences from shorter ones by such 
devices as adding ‘John said that’ to the beginning, or putting ‘and 
then they had tea.’ at the end.) 

 These are slightly messy examples. If you want a nice clean exam-
ple of an infi nite set, simply take the set of all the natural numbers, 
{0, 1, 2, 3, . . .}. 

 While we are on numbers, take care not to confuse numbers with 
the numerals  that name them. (See  Boxes  4  and  5  .) Numerals are  words
like ‘one’ and ‘two’ or  symbols  like ‘1’ and ‘2’. Numbers are the more 
abstract things that these numerals name. The English word ‘two’ is a 

Infi nite Sets   
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 Philosophers are very fussy (because they often need to be) about distin-

guishing words from the things that they refer to. If you want to talk about 

the word rather than the thing, you must put the word in quotes to form a 

name of that word itself. Here are some examples that illustrate this 

device.

  London contains ten million people, but ‘London’ contains six letters. 
 Jack is an unpopular person, but ‘Jack’ is a popular name. 
 Seven is an odd number, but ‘seven’ is an English word—a numeral. 
 {John, Paul, George, Ringo} is the same set as {x: x is a Beatle}, but ‘{John, Paul, 
George, Ringo}’ and ‘{x: x is a Beatle}’ are two different names for that set.   

 On the left-hand side of these examples we  use  the names, on the right we 

 mention  them. 

    Box 4  Use and Mention    

different word from the French word ‘deux’, but they both name the 
same number. Again, the Arabic ‘2’ is a different symbol from the 
Roman ‘II’ but they also both name the same number. Numerals are 
signs used in specifi c representation systems. Numbers themselves 
are timeless entities that transcend the perspective of any given  system 
of representation. (See  Box  6  .)     

     2.2   Different Kinds of Numbers   

 The most basic numbers are the  natural numbers : 0, 1, 2, 3, . . . 
 If we add the negative whole numbers to the natural numbers, then 

we get the  integers : . . . -3, -2, -1, 0, 1, 2, 3 . . . 
 In addition to the integers, we also want to recognize various kinds 

of intermediate numbers, numbers that fall between the integers. 
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 The simplest are the  rational numbers , namely those that can be 
expressed as fractions of the form p/q, where p and q are integers. 

 But we also need to recognize further numbers that are not 
rational. 

 For example, √2 is not rational. There is no way to express √2 in 
the form p/q where p and q are integers. (See  Box  7  .)  

 Similarly, π (the ratio of a circle’s circumference to its diameter) is 
not rational. It cannot be expressed as p/q with integral p and q either. 

 Many other numbers are similarly irrational. 
 The  real  numbers comprise both the rational and irrational 

numbers. 
 Any real number can be represented by an infi nitely long decimal 

expansion: e.g. 23.17564839 . . . 

    cat cat   

  Question . How many words were there in the previous line?  Answer . One 

word  type , but two  tokens  of that type. 

 The term “ ‘cat’ ” can refer either to the type word or to some specifi c 

token of it. 

 Thus:  ‘cat’ occurs often in children’s stories . Here I use “ ‘cat’ ” to refer to a 

word type. 

 But now consider :  the fi rst ‘cat’ at the beginning of this Box could have 

been written with a capital letter . Here I use “ ‘cat’ ” to refer to a specifi c token 

of the relevant type. 

 (Note how I have to use double quotes—“ ‘cat’ ”—to  mention  the  name  of 

the original word, that is, the name that we formed by putting that original word 

in single quotes.)  

    Box 5  Types and Tokens    
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 In this format, we can distinguish the rational numbers from the 
irrational ones by the fact that the rational numbers will eventually 
display some recurring sequence of digits. So for example, 1/11 is 
0.090909 . . . and 2/7 is 0.285714285714285714 . . . (See the Exercises for 
some hints about how to show that the rational numbers are just those 
whose decimal expansions recur.)  

     2.3   Two Senses of ‘More’   

 Here is a good question. Are there more natural numbers than even 
numbers? 

 In one obvious sense the answer must be yes. The set of even 
 numbers {0, 2, 4, 6, . . .} is a  proper   subset  of the set of natural numbers 
{0, 1, 2, 3, . . .}. The latter set contains all the members of the former set 
and then some. There are plenty of natural numbers that aren’t even, 
but no even numbers that aren’t natural. 

 As with sets, it is possible to doubt whether numbers really exist. If they 

are outside space and time, and have no causal impact on anything, do we 

really need to believe in them? Some philosophers are indeed inclined to 

dismiss numbers, along with sets, as no more than useful fi ctions. But, as 

before, we can bypass this issue here, and think of ourselves as exploring 

what properties numbers  would  have,  if  they existed. Even those who are 

suspicious of numbers will do well to understand their workings, so to 

speak. 

    Box 6  The Reality of  Numbers    
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 Suppose (for the sake of a ‘reductio ad absurdum’ proof) that √2  is  rational 

and so can be represented as p/q, where p and q are integers, and suppose 

further that p and q have no common factors, that is, that all cancelling has 

been done. Then it follows:

  √2 = p/q 

 2 = p 2 /q 2  

 2q 2  = p 2    

 So p must be an even number (since its square is an even number). So, for 

some integer r, p must be 2r. So

  p 2  = 4r 2    

 And, since we already know that 2q 2  = p 2 , it follows that

  q 2  = 2r 2    

 So q must be an even number too. But now q and p are both even, which 

contradicts the supposition that √2 is rational and represented as p/q 

with no common factors. So by reductio we can conclude that √2 is 

irrational. 

 When the Greeks fi rst discovered that √2 is irrational, it freaked them 

out. They knew from Pythagoras’ theorem that √2 is the length of the 

hypotenuse of a right-angled triangle whose other sides are each of length 

1. But the irrationality of √2 means that there can be no unit of length that 

will fi t exactly q times into these short sides and p times into the hypote-

nuse (for if there were, then √2 would equal p/q). To the Greeks, this seemed 

to contradict the very idea of length. It is said that the Greek mathemati-

cians who fi rst proved the irrationality of √2 tried to keep their discovery a 

secret. 

    Box 7  √2 is Irrational    
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 But in a different sense the answer is no. The even numbers can be 
paired up one-to-one  with the naturals. In this sense there are just as 
many even numbers as natural numbers.   

0 2 4 6 8 . . .
0 1 2 3 4 . . .

 This mapping gives a unique even number for every natural number, 
and vice versa. 

 There is no contradiction here. We can distinguish two senses in 
which set A can contain ‘more members’ than set B. In the fi rst sense 
(call it the ‘subset’ sense), it simply means that B is a proper subset of 
A. In the second sense (the ‘pairing’ sense), it means rather that any 
attempt to pair the members of A one-to-one with those of B will 
leave some members of A unpaired. 

 There are more natural numbers than even numbers in the subset 
sense, but not in the pairing sense—for the pairing illustrated above 
succeeds in matching every natural number with its own even number. 

 When we are dealing with fi nite sets, the two senses of ‘more’ coin-
cide. If a fi nite set B is a proper subset of fi nite set A, then the As can’t 
all be paired up one-to-one with the Bs, for there won’t be enough 
Bs—any attempted pairing will leave some extra As unpaired. 

 But with infi nite sets, B can be a proper subset of A, and still be 
paired up one-to-one with the As—for now the Bs won’t automat-
ically run out before we get to the end of the As. 

 This is in fact a defi ning characteristic of infi nite sets. The members 
of any infi nite set, but of no fi nite set, can be paired up one-to-one 
with the members of some of its proper subsets.  

     2.4   Denumerability   

 The odd numbers can also be paired one-to-one with the natural numbers.   
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1 3 5 7 9 . . .
0 1 2 3 4 . . .

 So can the squared whole numbers.   

0 1 4 9 16 . . .
0 1 2 3 4 . . .

 And all the integers.   

0 -1 +1 -2 +2 . . .
0 1 2 3 4 . . .

 What about the rational numbers? At fi rst sight it might seem that 
there are too many. There really are an awful lot. In particular, given 
any two rational numbers, however close together, there will always 
be another rational number in between them. (Mathematicians call 
this property ‘density’.) You might think that this would block any 
attempt to line them up with the natural numbers. 

 Surprisingly, however, the rational numbers can also be paired 
up one-to-one with the natural numbers. To see this, consider the 
following grid. It clearly contains all the rational numbers. And the 
arrows indicate a systematic way of going through the grid in 
sequence and thereby placing the rational numbers in a numerical 
order.   1    

1   A little complication. If we list the rational numbers as in the diagram below, 
any given rational number will recur in different guises at different points in 
the list. For example, we will not only have 1/2, but later on 2/4, 3/6, and so 
on. Since these are all the same rational number, just written in different 
ways, our list won’t really pair each rational number with a  unique  natural 
number. The remedy is to complicate the listing procedure a bit––before 
writing down the n th  rational number, check that it hasn’t already occurred in 
the list, and throw it away if it has.  
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 Whenever the members of a set can be paired one-to-one with the 
natural numbers, we say the set is  denumerable . A denumerable set is 
one that can be placed in a numerical list. A numerical list, if you think 
about it, just  is  a pairing of the listed items with the natural numbers—
the fi rst in the list with 1, the second with 2, and so on.  

     2.5   More Denumerable Sets   

 Many unruly-looking sets can be shown to be denumerable. 
 Take the set of all rectangles with rational length and breadth, for 

example. Each of these is defi ned by two rational numbers. Given that 
we can place all the rational numbers themselves in a numerical list, 
by the grid trick above, we can thus equate each of these pairs of 
rational numbers with a pair of  natural  numbers. And then we can 
apply the grid technique once more, to place these pairs of natural 
numbers themselves in a numerical list. This will then amount to a 
numerical list of the rectangles we started with. 

1/1 2/1 3/1 4/1

1/2 2/2 3/2 4/2

1/3 2/3 3/3 4/3

1/4 2/4 3/4

5/1

5/2

1/5 2/5

6/1 …

…

…

…

…

…
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 Or take the set of all English sentences. To place these in a numer-
ical list, consider all fi nitely long strings of English letters (counting a 
space as a 27 th  letter). Now order the one-letter strings alphabetically, 
then the two-letter strings, and so on. Now go through the resulting 
list and throw away all the strings which don’t make sense as English 
sentences. You’ll be left with a numerical list of English sentences. 

 There are many similar examples of denumerable sets.  

     2.6   The Non-Denumerability 
of the Real Numbers   

 We have just seen that many complicated-looking infi nite sets turn 
out to be denumerable. Does this hold for all infi nite sets? Our sur-
prising success at pairing the rational numbers and other unpromis-
ing-looking sets with the natural numbers might make you think that 
a similar trick can be pulled with all infi nite sets. But that would be a 
mistake. The  real   numbers  cannot be paired one-to-one with the natu-
ral numbers. They are  non -denumerable. Indeed the reals between 0 
and 1, or in any fi nite interval, are non-denumerable. 

 To show this, suppose (for the sake of another reductio argument) 
that the reals between 0 and 1  were  denumerable. Then they could be 
paired up with the natural numbers in some way. To illustrate,  suppose 
the pairing starts as in the list below. (This is just for illustration—the 
argument will work whatever the pairing.)   

1 0.123456…
2 0.234567…
3 0.987654…
4 0.976543…

 Now construct a new number according to the following rule: make 
the fi rst digit one more than the fi rst digit of the fi rst number in this 
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list, the second digit one more than the second digit of the second 
number, the third digit one more than the third digit of the third 
number, and so on . . . (using 0 as ‘one more than 9’ whenever the n th

digit in the n th  number is 9). 

0 . 2 4 0 2 …1 0 . 1 2 3 6 5 6 …
2 0 . 2 3 4 5 6 7 …
3 0 . 7 8 9 0 1 2 …
4 0 . 8 9 0  1 2 3 …

5 …

+ 1

 So, given our supposed initial listing of the reals, our new number will 
be 0.2402 . . . And note that this new number  can’t be anywhere in the 
original list , since it differs from the fi rst number in the fi rst digit, from 
the second in the second digit, and so on. 2

 This is Cantor’s famous diagonal argument. It shows that there are 
more real numbers than natural numbers  even in the one-to-one pairing 

2   There is a little complication in this diagonal proof too. Some real numbers 
have two decimal representations. Consider for example 0.999 . . . = 3 x 0.333 . . . = 
3 x 1/3 = 1. This shows that 0.999 . . . and 1 . . . are the same real number written in 
different ways. And this might make you worry that Cantor’s argument only 
proves that there is a ‘diagonal  representation ’ that isn’t in the original list of deci-
mal representations , not that there is a real  number  that isn’t among the  numbers
named by that list––for maybe the ‘diagonal representation’ is just an alternative 
name for one of the numbers already listed. 

 Well, it would be interesting enough to know that the set of decimal repre-
sentations is itself non-denumerable, even if the real numbers themselves 
aren’t. But in any case it is easy enough to tighten the proof so as to plug this 
hole. One of the Exercises at the end of  Chapter  3   covers this.  
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sense  of ‘more’. If you try to pair up the reals with the naturals you will 
always have some real number left over. Given any supposed listing of 
the reals, it is always possible to construct another real number that 
isn’t in that list.      

     2.7   The Abundance of the Real Numbers   

 The reals are very abundant indeed. To get some feel for this, recall 
that the real numbers are represented by  infi nitely  long decimal strings, 
including strings that display no recurring patterns. The other entities 
we have been dealing with (rational numbers, sentences, …) can all be 
represented in fi nite terms. This doesn’t stop there being infi nitely 
many rational numbers or sentences—fi nite representations can get 
longer and longer. But once we switch to  infi nitely  long strings of digits, 
we are dealing with a quite different order of plurality. 

 The example of the reals shows that infi nite sets come in different 
sizes. There is the size shared by all the denumerable sets. But the real 
numbers are bigger again. In the next chapter we shall explore the way 
in which different infi nite sets can have different sizes in this way.   
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      further reading   

Numbers: A Very Short Introduction  by Peter Higgins (Oxford University Press 
2011) explains the different kinds of numbers. 

 The last two chapters of Eric Steinhart’s  More Precisely: The Math You Need To Do 
Philosophy  (Broadview Press 2009) deal with infi nite sets and the variety of infi n-
ite numbers. 

An Introduction to the Philosophy of Mathematics  by Mark Colyvan (Cambridge Uni-
versity Press 2012) is a short and punchy introduction to the philosophical 
issues raised by numbers and mathematical objects. 

 James Robert Brown’s  Philosophy of Mathematics: An Introduction to a World of 
Proofs and Pictures  (Routledge 1999) is another lively introduction to this area.    

     exercises   

       1.  Write a sentence that both uses and mentions the word ‘philosophy’. 
Write a sentence that both uses and mentions some other word. Say 
where in the two sentences the relevant words are used and where 
mentioned.  

   2.  7 7 
 How many token numerals are on the previous line? How many type 

numerals?
 How many natural numbers are less than 10? How many  Arabic type 

numerals are written with one digit?  

   3.  Show how all the integral multiples of 5 (positive and negative) can be 
paired one-to-one with the natural numbers.  

   4.  Which of the following are subsets of the natural numbers? 

    (a)  the squares of the natural numbers  
   (b)  the square roots of the natural numbers  
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   (c)  the positive whole numbers less than 10 million  
   (d)  the rational numbers    

   5*.   Show that any rational number p/q, with p and q integers, will have a 
decimal expansion that eventually recurs. (Hint: think about what will 
happen as you generate the decimal expansion by dividing q into p.)  

   6*.   Show that any decimal number that terminates with a recurring part is 
equal to some rational number. (Hint: fi rst separate the recurring part, 
then multiply it by 10  k , where k is the number of digits in the recurring 
part, then see what happens when you subtract the original recurring 
part from this number.)     

 (*Exercises with starred numerals are more diffi cult.)     


