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7 Bayes’ Rule

One of the most useful consequences of the basic rules helps us understand
how to make use of new evidence. Bayes’ Rule is one key to “learning from
experience.”

Chapter-5 ended with several examples of the same form: urns, shock absorbers,
weightlifters. The numbers were changed a bit, but the problems in each case
were identical.

For example, on page 51 there were two urns A and B, each containing a
known proportion of red and green balls. An urn was picked at random. So we
knew:

Pr(A) and Pr(B).

Then there was another event R, such as drawing a red ball from an urn. The
probability of getting red from urn A was 0.8. The probability of getting red from
urn B was 0.4. So we knew:

Pr(R/A) and Pr(R/B).

Then we asked, what is the probability that the urn drawn was A, conditional on
drawing a red ball? We asked for:

Pr(A/R) =? Pr(B/R)=7?

Chapter 5 solved these problems directly from the definition of conditional prob-
ability. There is an easy rule for solving problems like that. It is called Bayes’
Rule.

In the urn problem we ask which of two hypotheses is true: Urn A is selected,
or Urn B is selected. In general we will represent hypotheses by the letter H.
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We perform an experiment or get some evidence: we draw at random and
observe a red ball. In general we represent evidence by the letter E.

Let’s start with the simplest case, where there are only two hypotheses, H
and ~H. By definition these are mutually exclusive, and exhaustive.

Let E be a proposition such that Pr(E) > 0. Then:

Pr(H)Pr(E/H)

Pr(H/E) = Pr(H)Pr(E/H) + Pr(~H)Pr(E/~H)

This is called Bayes’ Rule for the case of two hypotheses.

PROOF OF BAYES’ RULE

Pr(H&E) = Pr(E&H)
Pr(H&E)PK(E) _ Pr(E&H)Pr(H)

Pr(E) Pr(H)
Using the definition of conditional probability,

Pr(H/E)Pr(E) = Pr(E/H)Pr(H).
Pr(H/E) = ——P’(Hl))f(rg/ B

Since H and (~H) are mutually exclusive and exhaustive, then, by the rule of
total probability on page 59,

Pr(E) = Pr(H)Pr(E/H) + Pr(~H)Pr(E/~H).
Which gives us Bayes’ Rule:

Pr(H)Pr(E/H)

(1) Pr(H/E) = Pr(H)Pr(E/H) + Pr(~H)Pr(E/~H)

GENERALIZATION

The same formula holds for any number of mutually exclusive and jointly exhaus-
tive hypotheses:

H, H, H, H,, ..., H, such that for each i, Pr(H,) > 0.

Mutually exclusive means that only one of the hypotheses can be true. Jointly
exhaustive means that at least one must be true.

By extending the above argument, if Pr(E) > 0, and for every i, Pr(H,)) > 0,
we get for any hypothesis H,,

o oo Pr(H) Pr(E/H)
@ PrE/E) = 51 ) P(E/H]

Bayes’ Rule

Here the X (the Greek capital letter sigma, or S in Greek) stands for the sum of
the terms with subscript i. Add all the terms [Pr(H)Pr(E/H))] fori =1,i = 2, up
toi =k.

Formula (1) and its generalization (2) are known as Bayes’
Rule.

The rule is just a way to combine a couple of basic rules, namely conditional
and total probability. Bayes’ Rule is trivial, but it is very tidy. It has a major role
in some theories about inductive logic, explained in Chapters 13-15 and 21.

URNS

Here is the urn problem from page 51:

Imagine two urns, each containing red and green balls. Urn A has 80% red
balls, 20% green, and Urn B has 60% green, 40% red. You pick an urn at random,
and then can draw balls from the urn in order to guess which urn it is. After
each draw, the ball drawn is replaced. Hence for any draw, the probability of
getting red from urn A is 0.8, and from urn B it is 0.4.

Pr(R/A) = 0.8 Pr(R/B) = 0.4 Pr(A) = Pr(B) = 0.5

You draw a red ball. What is P(A/R)?
Solution by Bayes’ Rule:

Pr(A)Pr(R/A)
Pr(A)Pr(R/A) + Pr(B)Pr(R/B)

Pr(A/R) =

= (0.5 X 0.8)/[(0.5 X 0.8) + (0.5 X 0.4)] = 2/3.

This is the same answer as was obtained on page 51.

SPIDERS

A tarantula is a large, fierce-looking, and somewhat poisonous tropical spider.
Once upon a time, 3% of consignments of bananas from Honduras were
found to have tarantulas on them, and 6% of the consignments from Guatemala
had tarantulas.
40% of the consignments came from Honduras. 60% came from Guatemala.

A tonomtilo conn Losind e o vae R1e i
A tarandula was found on a randomly selected lot of bananas. What is the

probability that this lot came from Guatemala?
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Solation
Let G = The lot came from Guatemala. Pr(G) = 0.6.
Let H = The lot came from Honduras. Pr(H) = 0.4.
Let T = The lot had a tarantula on it. P((T/G) = 0.06. Pr(T/H) = 0.03.
Pr(G)Pr(T/G)
Pr(G/T) =
HG/T) = prGPrT/C) + Pr(H)Pr(T/H)

Answer: Pr(G/T) = (.6 X .06) / [(.6 X .06) + (4 X .03)] = 3/4

TAXICABS: ODD QUESTION 5
Here is Odd Question 5.

You have been called to jury duty in a town where there are two taxi compa-
nies, Green Cabs Ltd. and Blue Taxi Inc. Blue Taxi uses cars painted blue;
Green Cabs uses green cars.

Green Cabs dominates the market, with 85% of the taxis on the road.

On a misty winter night a taxi sideswiped another car and drove off. A
witness says it was a blue cab.

The witness is tested under conditions like those on the night of the
accident, and 80% of the time she correctly reports the color of the cab that is
seen. That is, regardless of whether she is shown a blue or a green cab in
misty evening light, she gets the color right 80% of the time.

You conclude, on the basis of this information:

(a) The probability that the sideswiper was blue is 0.8.
——(b) It is more likely that the sideswiper was blue, but the probability is

less than 0.8.

{c) Itis just as probable that the sideswiper was green as that it was blue.
—(d) tt is more likely than not that the sideswiper was green.

This question, like Odd Question 2, was invented by Amos Tversky and
Daniel Kahneman. They have done very extensive psychological testing on this
question, and found that many people think that (a) or (b) is correct. Very few
think that (d) is correct. Yet (d) is, in the natural probability model, the right
answer! Here is how Bayes’ Rule answers the question.

Solution
Let G = A taxi selected at random is green. Pr(G) = 0.85.
Let B = A taxi selected at random is blue. Pr(B) = 0.15.
Let W, = The witness states that the taxi is blue.
Pr(W,/B) = 0.8.

Moreover, Pr(W,/G) = 0.2, because the witness gives a wrong answer 20% of the
time, so the probability that she says “blue” when the cab was green is 20%

TODADIITY Lal Was giTin 15 cuvu.

We require Pr(B/W,) and Pr(G/W,).

Bayes’ Rule

Pr(B)Pr(W,/B)
Pr(B)Pr(W,/B) + Pr(G)Pr(W,/G)
Pr(B/W,) = (.15 X .8) / [(15 X .8) + (85 X .2)] = 12/29 ~ 0.41

Pr(B/W,) =

Answer:

Pr(B/W,) ~ 0.41.
Pr(G/W,) ~ 1 — 041 = 0.59.
It is more likely that the sideswiper was green.

BASE RATES
Why do so few people feel, intuitively, that (d) is the right answer? Tversky and
Kahneman argue that people tend to ignore the base rate or background infor-
mation. We focus on the fact that the witness is right 80% of the time. We ignore
the fact that most of the cabs in town are green.

Suppose that we made a great many experiments with the witness, randomly
selecting cabs and showing them to her on a misty night. If 100 cabs were picked
at random, then we’d expect something like this:

The witness sees about 85 green cabs. She correctly identifies 80% of these as
green: about 68.

She incorrectly identifies 20% as blue: about 17.

She sees about 15 blue cabs. She correctly identifies 80% of these as blue:
about 12.

She incorrectly identifies 20% as green: about 3.

So the witness identifies about 29 cabs as blue, but only 12 of these are blue! In fact, the
more we think of the problem as one about frequencies, the clearer the Bayesian
answer becomes.

Some critics say that the taxicab problem does not show that we make mis-
takes easily. The question is asked in the wrong way. If we had been asked just
about frequencies, say the critics, we would have given pretty much the right
answer straightaway!

RELIABILITY

Our witness was pretty reliable: right 80% of the time. How can a reliable witness
not be trustworthy? Because of the base rates. We tend to confuse two different
ideas of “reliability.”
Idea 1: Pr(W,/B): How reliable is she at identifying a cab as blue, given that it
is in fact blue? This is a characteristic of the witness and her perceptual acumen.
Idea 2: Pr(B/W.): How well can what the witness said be relied on, given that

she said the cab is blue? This is a characteristic of the witness and the base rate.
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FALSE POSITIVES

Base rates are very striking with medical diagnoses. Suppose I am tested for a
terrible disease. I am told that the test is 99% right. If I have the disease, the test
says YES with probability 99%. If I do not have the disease, it says NO with
probability 99%.

I'am tested for the disease. The test says YES. I am terrified.

But suppose the disease is very rare. In the general population, only one
person in 10,000 has this disease.

Then among one million people, only 100 have the disease.

In testing a million people at random, our excellent test will answer YES for
about 1% of the population, that is, 10,000 people. But as we see by a simple
calculation in the next section, at most 100 of these people actually have the disease!
I 'am relieved, unless I am in a population especially at risk,

I was terrified by a result YES, plus the test “reliability” (Idea 1):

Pr(YES/I'm sick).
But I am relieved once I find out about the “reliability” of a test result (Idea 2):
Pr(I'm sick/YES).

A test result of YES, when the correct answer is NO, is called a false positive. In
our example, about 9,900 of the YES results were false positives.

Thus even a very “reliable” test may be quite misleading, if the base rate for
the disease is very low. Exactly this argument was used against universal testing
for the HIV virus in the entire population. Even a quite reliable test would give
far too many false positives. Even a reliable test can be trusted only when applied
to a population “at risk,” that is, where the base rate for the disease is substantial.

PROBABILITY OF A FALSE POSITIVE

The result of testing an individual for a condition D is positive when according
to the test the individual has the condition D.

The result of testing an individual for a condition D is a false positive when
the individual does not have condition D, and yet the test result is nevertheless
positive.

How much can we rely on a test result? This is Idea 2 about reliability. The
probability of a false positive is a good indicator of the extent to which you
should rely on (or doubt) a test result.

Let D be the hypothesis that an individual has condition D.

Let Y be YES, a positive test result for an individual.

A false positive occurs when an individual does not have condition D, even
though the test result is Y. .

The probability of a false positive is Pr(~D/Y).

Bayes’ Rule

In our example of the rare disease:

The base rate is Pr(D) = 1/10,000. Hence Pr(~D) = 9,999/10,000.
The test’s “reliability” (Idea 1) is Pr(Y/D) = 0.99.
And Pr(Y/~D) = 0.01.

Applying Bayes’ Rule,

Pr(~D)Pr(Y/~D)

Pr(~D)Pr(Y/~D) + Pl'(D)Pr(Y/D)_ 9999/(9999 + 99) ~ 0.99.

Pr(-D/Y) =

STREP THROAT: ODD QUESTION 6

6. You are a physician. You think it is quite likely that one of your patients has
strep throat, but you aren’t sure. You take some swabs from the throat and
send them to a lab for testing. The test is (like nearly all lab tests) not perfect.

If the patient has strep throat, then 70% of the time the lab says YES. But
30% of the time it says NO.

If the patient does not have strep throat, then 90% of the time the lab says
NO. But 10% of the time it says YES.

You send five successive swabs to the lab, from the same patient. You get
back these results, in order:

YES, NO, YES, NO, YES

You conclude:
(@) These results are worthless.
— (b 1tis likely that the patient does not have strep throat.
() It is slightly more likely than not, that the patient does have strep
throat.
—_(d) It is very much more likely than not, that the patient does have strep
throat.

In my experience almost no one finds the correct answer very obvious. It looks
as if the yes-no-yes-no-yes does not add up to much. In fact, it is very good
evidence that your patient has strep throat.

Let S = the patient has strep throat.

Let ~S = the patient does not have strep throat.
Let Y = a test result is positive.

Let N = a test result is negative

You think it likely that the patient has strep throat. Let us, to get a sense of the

problem, put a number to this, a probability of 90%, that the patient has strep
throat. Pr(S) = 0.9.
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Solution

We know the conditional probabilities, and we assume that test outcomes are
independent.

Pr(Y/S) = 0.7 Pr(N/S) =03
Pr(Y/~S) =01  Pr(N/~S) =09
We need to find Pr(S/YNYNY).

Pr(YNYNY/S) = 0.7 X 0.3 X 0.7 X 0.3 X 0.7 = 0.03087
Pr(YNYNY/~S) = 0.1 X 0.9 X 0.1 X 0.9 X 0.1 = 0.00081

_ Pr(S)Pr(YNYNY/S)
Pr(S/YNYNY) = Pr(S)Pr(YNYNY/S) + Pr(~S)Pr(YNYNY/~S)
e YNYNY) = 09 X 0.03087 _ 0997

(0.9 X 0.03087) + (0.1 X 0.00081)

Or you can do the calculation with the original figures, most of which cancel, to
give Pr(S/YNYNY) = 343/344. Starting with a prior assumption that Pr(S) = 0.9,
we have found that Pr(S/YNYNY) is almost 1!

Answer: So (d) is correct: It is very much more likely than not, that the patient does
have strep throat.

SHEER IGNORANCE

But you are not a physician. You cannot read the signs well. You might just as
well toss a coin to decide whether your friend has strep throat. You would model
your ignorance as tossing a coin:

Pr(S) = 0.5.

Then you learn of the test results. Should they impress you, or are they meaning-
less? You require Pr(S/YNYNY).

Solution
Using the same formula as before, but with Pr(S) =0.5,

Pr(S/YNYNY) = (5 X .03087)/[(.5 X .03087) + (5 X .00081)] ~ 0.974.
Or, exactly, 343/352.

Answer: This result shows once again that the test results YNYNY are powerful
evidence that your friend has strep throat.

REV. THOMAS BAYES

Bayes’ Rule is named after Thomas Bayes (1702-1761), an English minister who
was interested in probability and induction. He probably disagreed strongly with

Bayes’ Rule

the Scottish philosopher David Hume about evidence. Chapter 21 explains how
one might-evade Hume’s philosophical problem about induction by using Bayes-
ian ideas.

Bayes wrote an essay that was published in 1763 (after his death). It contains
the solution to a sophisticated problem like the examples given above. He imag-
ines that a ball is thrown onto a billiard table. The table is “so made and leveled”
that a ball is as likely to land on any spot as on any other. A line is drawn
through the ball, parallel to the ends of the table. This divides the table into two
parts, A and B, with A at a distance of 4 inches from one end.

Now suppose you do not know the value of a. The ball has been thrown
behind your back, and removed by another player.

Then the ball is thrown n times. You are told that on k tosses the ball falls in
segment A of the table, and in n—k tosses it falls in segment B. Can you make a
guess, on the basis of this information, about the value of 4? Obviously, if most
of the balls fell in A, then 4 must cover most of the length of the table; if it is
about 50:50 A and B, then a should be about half the length of the table.

Thomas Bayes shows how to solve this problem exactly, finding, for any
distance x, and any interval ¢, the probability that the unknown a lies between
(x—¢) and (x+€).

The idea he used is the same as in our examples, but the mathematics is hard.
What is now called Bayes’ Rule (or, misleadingly, Bayes’ Theorem) is a trivial
simplification of Bayes’ work. In fact, as we saw in Chapter 4, all the work we
do with Bayes’ Rule can be done from first principles, starting with the definition
of conditional probability.

EXERCISES

1 Lamps and triangles. Use Bayes’ Rule to solve 2(c), and 3(c) in the exercises for
Chapter 5, page 56.

2 Double dipping.

Contents of urn A: 60 red, 40 green balls.
Contents of urn B: 10 red, 90 green balls.
An urn is chosen by flipping a fair coin.
(a) Two balls are drawn from this urn with replacement. Both are red. What is the
probability that we have urn A?
(b) Two balls are drawn from this urn without replacement. Both are red. What is
the probability that we have urn A?

3 Tests. A professor gives a true-false examination consisting of thirty T-F questions.
The questions whose answers are “true” are randomly distributed among the
thirty questions. The professor thinks that % of the class are serious, and have
correctly mastered the material, and that the probability of a correct answer on
any question from such students is 75%. The remaining students will answer at
randoin. She glances al a couple of questions fioin a test picked haphazardly.
Both questions are answered correctly. What is the probability that this is the test
of a serious student?
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4 Weightlifters. Recall the coach that sent one of two teams for competition (page
54 above). Each team has ten members. Eight members of the Steroid team (S) use
steroids (U). Two members of the Cleaner team (C) use steroids. The coach
chooses which team to send for competition by tossing a fair coin.

One athletics committee tests for steroids in the urine of only one randomly
chosen member of the team that has been sent. The test is 100% effective. If this
team member is a user, the team is rejected.

(a) What would be a false positive rejection of the entire team?

(b) What is the probability of a false positive?

() Another committee is more rigorous. It randomly chooses two different mem-
bers. What is the probability of a false positive?

5 Three hypotheses. (a) State Bayes’ Rule for the conditional probability Pr(F/E) with
three mutually exclusive and exhaustive hypotheses, F, G, H. (b) Prove it.

6 Computer crashes. A small company has just bought three software packages to
solve an accounting problem. They are called Fog, Golem, and Hotshot. On first
trials, Fog crashes 10% of the time, Golem 20% of the time, and Hotshot 30% of
the time.

Of ten employees, six are assigned Fog, three are assigned Golem, and one is
assigned Hotshot. Sophia was assigned a program at random. It crashed on the
first trial. What is the probability that she was assigned Hotshot?

7  Deterring burglars. This example is based on a letter that a sociologist wrote to the
daily newspaper. He thinks that it is a good idea for people to have handguns at
home, in order to deter burglars. He states the following (amazing) information:
The rate with which a home in the United States is burgled at least once
per year is 10%. The rate for Canada is 40%, and for Great Britain is 60%.
These rates have been stable for the past decade.

Don't believe everything a professor says, especially when he writes to the news-

paper! Suppose, however, that the information is correct as stated, and that:
Jenny Park, Larry Chen, and Ali Sami were trainee investment bankers for
a multinational company. During the last calendar year Jenny had a home
in the United States, Larry in Great Britain, and Ali in Canada.

One of the trainees is picked at random. This person was burgled last year. What

is the probability that this person was Ali?
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8 Expected Value

Inductive logic is risky. We need it when we are uncertain. Not just uncertain
about what will happen, or what is true, but also when we are uncertain
about what to do. Decisions need more than probability. They are based on
the value of possible outcomes of our actions. The technical name for value
is utility. This chapter shows how to combine probability and utility. But it
ends with a famous paradox.

R

ACTS

Should you open a small business?

Should you take an umbrella?

Should you buy a Lotto ticket?

Should you move in with someone you love?
In each case you settle on an act. Doing nothing at all counts as an act.
Acts have consequences.

You go broke (or maybe found a great company).

You stay dry when everyone else is sopping wet (or you mislay your um-

brella).

You waste a dollar (or perhaps win a fortune).

You live happily ever after (or split up a week later).

You do absolutely nothing active at all: that counts as an act, too.
Some consequences are desirable. Some are not. Suppose you can represent the
cost or benefit of a possible consequence by a number—so many dollars, perhaps.
Call that number the utility of the consequence.

Suppose you can also represent the probability of each possible consequence
of an act by a number.

In making a decision, we want to assess the relative merits of each possible
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