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is elliptical and analytic, expressing a logical relation between two factual
statements. Consequently, there will be a difference concerning the future
procedure in the following respect, if further observations exhibit a value
of the relative frequency deviating considerably from g. The statement in
sense (i) is rejected as probably false; the statement in sense (i1) , however,
remains valid but becomes irrelevant for practical purposes and is re-
placed by a new, likewise analytic, statement referring to the increased

evidence.

§ 43. Inductive and Deductive Logic

A. Can a2 system of inductive logic as a theory of the degree of confirmation
contain exact rules? This is sometimes denied for the reason that the procedure
of induction is not rational but intuitive, Now it must be admitted that there is

_ = o effective procedure for finding a suitable hypothesis & for the explanation of
a given observational report e, nor, if a hypothesis  is proposed, for determin-
{ing c{k,e). However, this is no reason against the possibility of an inductive
logic because in deductive logic there is likewise no effective procedure for the
solution of the corresponding problems. On the other hand, there are effective
procedures for testing whether an alleged proof for a logical theorem is correct,
e.g., in deductive logic for a theorem of the form ‘e L-implies #', and in induc-
tive logic for a theorem of the form ‘c(k,e) = 7.

B. Inductive logic is constructed from deductive logic by the adjunction of a
definition of ¢. Hence inductive logic presupposes deductive logic. The analogy
between these two fields of logic is illustrated by examples both for purely logi-
cal statements and for those involving the application to knowledge situations.
However, truth and knowledge of the evidencee, although relevant for these ap-
plications, are irrelevant for the validity of the statements in inductive logic, as
for those in deductive logic.

A. On the Possibility of Exact Rules of Induction

The question whether an inductive logic with exact rules is at all pos-
sible is still controversial. But in one point the present opinions of most
philosophers and scientists seem to agree, namely, that the inductive

procedire is not, so to speak, a mechanical procedure prescribed by fixed
rules. If, for instance, a report of observational results is given, and we
want to find a hypothesis which is well confirmed and furnishes a good
explanation for the events observed, then there is no set of fixed rules
which would lead us automatically to the best hypothesis or even a good
one. It is a matter of ingenuity and luck for the scientist to hit upon a
suitable hypothesis; and, if he finds one, he can never be certain whether
there might not be another hypothesis which would fit the observed facts
still better even before any new observations are made. This point, the

impossibility of an automatic inductive procedure, has been especially

* is called effective or definite if there is a procedure of decision for any given

i
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emphasized, among others, by Karl Popper ([Logik] $§ I“}é and else-
where), who also quotes a statement by Einstein: “There is no logical
way leading to these . . . laws, but only the intuition based upon a sym-
pathetic understanding of experience” (... die auf Einfithlung in die
Erfahrung sich stiitzende Intuition”) (Mein Welthild [1934], p. 168);
compare also Einstein, On the Method of Theoretical Physics (Oxford,
1933), pages 11-12. The same point has sometimes been formulated by
‘sa,ying that it is not possible to construct an inductive machine. The latter
is presumably meant as a mechanical contrivance which, when fed an
observational report, would furnish a suitable hypothesis, just as a com-
puting machine when supplied with two factors furnishes their product.

I am completely in agreement that an inductive machine of #4is kind is

not possible. However, I think we must be careful not to draw too far-
reaching negative consequences from this fact. I do not believe that this
fact excludes the possibility of a system of inductive logic with exact
rules or the possibility of an inductive machine with a different, more
limited, aim. It seems to me that, in this respect, the situation in inductive -
logic is similar to that in deductive logic. This will become clear by a
comparison of the tasks of these two parts of logic.

When considering the kinds of problems dealt with in any branch of
logic, deductive or inductive, one distinction is of fundamental impor-
tance. For some problems there is an effective procedure of solution, but
.for others there can be no such procedure. A procedure is called gffective
if it is based on rules which determine uniquely each step of the procedure
and if in every case of application the procedure leads to the solution in a
finite number of steps. A procedure of decision (‘Entscheldungsverfahren’)’
for a class of sentences is an effective procedure either, in semantics, for‘g
determining for any sentence of that class whether it is true or not (the
procedure is usually applied to L-determinate sentences and hence the
question is whether the sentence is L-true or L-false), or, in syntax, for
determining for any sentence of that class whether it is provable in a given
calculus (cf. Hilbert and Bernays [Grundlagen], Vol. IT, § 3). A concept

case of its application (Carnap [Syntax] § 15; [Formalization] § 2¢). An
effective arithmetical function is also called computable (A. M. Turing
Proc. London Math. Soc., Vol. 42 [1937]). ’
- Now let us compare the chief kinds of problems to be solved in deduc-
tive logic and in inductive logic. Our aim is to discover whether inductive
procedures are less regulated by exact rules than deductive procedures, as
some philosophers believe. J
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In order to simplify the comparison, let us regard deductive logic, in-
cluding mathematics, as the theory of L-implication, the explicatum for
logical entailment (§ 20), and inductive logic as the theory of degree of
confirmation, the quantitative explicatum of probability,. At this stage in
our discussions we do not yet know whether it is possible to find an ade-
quate quantitative explicatum for probability,. Therefore the following
explanations are meant at present merely in a hypothetical sense: éf there
is an adequate explicatum ¢ and hence a quantitative inductive logic as its
theory, what is its nature in comparison with deductive logic?

In each of the two branches of logic we may distinguish three kinds of
fundamental problems concerning the application of the fundamental
concepts, viz., L-implication or ¢, respectively.

. I. First Problem: To Find a Conclusion

a. Deductive logic. Given: a sentence e as a premise (it may be a con-
junction of a set of premises); wanted: a conclusion /% L-implied by ¢ and
suitable for a certain purpose. For instance, a set of axioms for geometry
is given; theorems concerning certain configurations are wanted. The es-
sential point is the fact that there is no effective precedure for the solution
of problems of this kind. The work of a logician or a mathematician con-
sists to'a great extent in attempts to solve problems of this kind, Some
laymen imagine a mathematician to be chiefly occupied with computa-
tion, though of a sort more complicated than computation in elementary
arithmetic. In fact, however, there is a difference in principle, not only in
degree of complexity, between the two kinds of activities. To find the
product of 15 and 17 is a simple task; to compute the square root of 7 to
five decimals is more complicated; to compute the value of a number de-
fined by a definite integral, e.g., e or =, to five decimals is still more com-
plicated, All these tasks of computation, however, are fundamentally of
the same nature, irrespective of the degree of complexity; for all of them
there is an effective procedure; and this is characteristic of computation.
The mathematician, on the other hand, cannot find fruitful and inter-
esting new theorems, say, in geometry, in algebra, in the infinitesimal cal-
culus, by computation or by any other effective procedure. He has to find

them by an activity in which rational and intuitive factors are combined.
This activity is not guided by fixed rules; it requires a creative ability,
which is not required in computation. ,

b. Inductive logic. Given: a sentence e as evidence; wanted: a hypothesis
frwhich is highly confirmed by the evidence ¢ and suitable for a certain pur-
pose. For instance, a report concerning observations of certain phenomena

on the surface of the sun is given; a hypothesis concerning the physical state’

-
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of the sun is wanted which, in combination with accepted physical laws,
furnishes a satisfactory explanation for the observed facts. Or, a historical
report about some acts of Napoleon is given; a hypothesis concerning his

".character, his knowledge at the time in question, and his conscious and

unconscious motives is wanted which would make his acts understandable.
There is no effective procedure for solving these problems; that is the
point emphasized by Eiistein and Popper, as mentioned above. However,
we see now that this feature is by no means characteristic of inductive
thinking; it holds in just the same way for the corresponding deductive
problems.

II. Second Problem: To Examine a Result

@. Deductive logic. Given: two sentences e and k; wanted: an answer to
the question whether e L-implies 4. For instance, on the basis of an axiom
set e of geometry, 2 mathematician finds, as a conjecture, an interesting
sentence % concerning the angles of a triangle; this constitutes a tentative
solution of a problem of the first kind; now he wants to find out whether -
is actually deducible from e. Here, again, there is, in general, no effective

-procedure; in other words, L-implication is, in general, not an effective

‘concept. Problems of this kind are again an essential part of any work in
logic and mathematics. They are closely connected with problems of the
first kind; for when a mathematician has found a theorem, he wants to
give an exact proof for it so as to compel the assent of others. Finding a
theorem is largely a matter of extrarational factors, not guided by rules.
Constructing a proof is often called a rational procedure because here
fixed rules have to be taken into consideration. However, the decisive
point must not be overlooked: the rules of deduction are not rules of pre-
scription, but rules of permission and of prohibition. That is to say, the
rules do not tell the logician X which step to take at a given point in the
course of a deduction; in other words, they do not constitute an effective
procedure. The rules tell X' merely which steps are permitted and thereby
they say implicitly that all other steps are prohibited; they leave it to X

- to choose one of the steps permitted. Thus, here again, it depends upon

Xs ingenuity and luck whether he solves the problem, that is, whether he
ﬁndska. series of steps permitted by the rules, such that they lead from
e to k.

More specifically, the situation is this. Only in the most elementary
part of logic, in propositional logic (see above, § 21) is there a general
method of decision, viz,, the customary method of truth-tables (see
§ 21B). As soon as we enter the next higher field of logic, the so-called
lower functional logic as represented, for instance, by our language sys-




'

196 'IV. THE PROBLEM OF INDUCTIVE LOGIC

tem £ (88 15 ff.), there cannot be a method of decision for all sentences.
[This has been shown by Alonzo Church; see Amer. Journal of Math., 58
(1936), 345, and Journal of Symboelic Logic, 1 (1936), 40.] This holds a
fortiori in the higher parts of logic, including arithmetic and the higher
branches of mathematics. This does not exclude the possibility of methods

. —=—=—%0f decision restricted to special kinds of sentences; and indeed several

such methods for certain kinds within lower functlonal logic have been
developed and are used as helpful instruments.

b. Inductive logic. Here, the problems of the second kind occur in two
different forms, because here we are concerned not only with two sentences
but, in additicn, with a third item, a number. (i) Given: two sentences e
and k; wanted: the value of ¢(k, e), i.e., the degree of confirmation of %
on the evidence e. (il) Given: two sentences e and % and a number 7;
wanted: an answer to the question whether c{k,e) = r. For instance, a
physicist has found, as a conjécture, a hypothesis # which he believes to
be a good expla.nation for the results e of certain experiments this is his
find out s Whethen kis 1ndeed highly confirmed by e and, more precnsely, (1)
what is the value of c(4,e); or, if he has made the guess that this value
is 7, he wants to find out (ii) whether indeed ¢(h,e) = r. There is, in gener-
al, no effective procedure for these problems; in other words, ¢ is, in gen-
eral, not a computable function. This does not exclude the existence of
methods of computation for ¢ in restricted classes. We shall later, in our
system of quantitative inductive logic, give such methods for the follow-
ing cases: (1) for all cases where % and e are molecular sentences in any

- system €, (2) for all cases where /% and e are sentences of any form, molecu-

lar or general, in any finite system 2, (3) for certain cases in a system £,
(i.e., an infinite system containing only primitive predicates of degree one,
§ 31). More methods of this kind could be found for other restricted
classes of cases. However, no general method of computation for ¢ is pos-
sible with respect to an infinite system f» which contains also relations;
becauge such a method would immediately yield a method of decision for
all sentences of this system, which is known to be impossible, as stated
under (a). Thus, if ¢ and % do not belong to one of the classes for which
a method of computation exists and is known, the inductive logician X
who wants to determine the value of ¢{h,e) cannot simply follow a way
prescribed by fixed rules, but just has to try to hit upon a way to a solution

" by his skill and good luck. This, however, is not a peculiar feature of in-
* ductive logic but holds in just the same way for deductive logic, as we

have seen.
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Thus it is true that an inductive machine is impossible for finding a
suitable hypothesis (first problem) and also for ezamining whether a given
hypothesis is suitable (second problem). But, then, a deductive machine
is likewise impossible if it is intended to solve the corresponding deductive
problems of finding a suitable L-implied theorem or of examining whether
a proposed theorem is indeed L-implied. However, for a restricted domain
as described above, an inductive machine for the determination of c(%,e)
is possible, for example, for all cases in which ¢ and % do not contain
variables with an infinite range of values; just as a deductive machine is
possible which decides whether or not e L-implies 4.

III. Third Problem: To Examine a Given Proof
a. Deductive logic. Given: e, k, and an alleged proof that e L-implies %;
wanted: an answer to the quest10n whether the alleged proof is actually
a proof, that is, whether it is in accordance with the rules of deductive
logic. .For instance, a mathematician believes to have not only a solution
of the first problem, for instance, a geometrical theorem %, but also a
solution of the second problem, a proof that the axiom set e L-implies the
theorem #; he wants to make sure that his belief is right, that is, that the
proof is correct, For the solution of this problem there is an effective
procedure, provided the proof is given completely. We have to distinguish
here two different methods which are in customary use for proving that
e L-implies /. (i) The first method consists in the construction of a se-
quence of sentences in the object language, leading from ¢ to % in accord-
ance with rules of deduction. (ii) The second method consists in a proof
in the metalanguage, leading to the semantical statement ‘e L-implies #’.
Strictly speaking, an effective method for testing proofs can only be ap-
plied if a set of deductive rules has been laid down and if the proof to be
tested is formulated in such a detailed form that every step in it consists
in a single application of one of the rules. This condition is not often ful-
filled in method (i) and almost never in method (ii). The method for test-
ing proofs, as they are usually formulated, is not effective in the strictest
sense. However, we may say that it is practically effective in the following
sense. Suppose a mathematician shows, by either method (i) or method
(ii), that the theorem % is deducible from the geometrical axioms e; and
suppose he uses in his proof, as is customary in geometry, the ordinary
word language without explicit rules of deduction. Then we know what
we have to do in order to examine the correctness of the proof. We ex-
amine for every single step in the proof whether it is an instance of a
simple deductive procedure which we know to be valid. The mathemati-
cian has made the steps in such a way that he expects us to be able to

/
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carry out this examination for every step and to come to an affirmative
result. If he has not overestimated our ability to recognize instances of
L-implication, we shall affirm step for step and thereby recognize the
whole proof as correct. Otherwise we have to ask him to split up the step
which we are unable to judge into more and simpler steps, for which we
are able to decide the question of correctness. Thus, in this examination of
the proof, we are not entirely left to guessing, to a trial-and-error method
as in problems of the first and second kind; instead, we know practically
how to proceed and we expect that, under normal conditions, we shall
reach a result in a finite number of operations, viz., the examinations of
the steps of the given proof. In this sense we may say that we have a

‘practically effective method. The result may also be formulated in this

way: while L-implication is not an effective concept, the concept of proof
for L-implication is effective, at least practically. '

The situation may be described more in detail as follows. A method of the
kind (i) is usually applied in syntax with respect to a calculus K; here the rules
constitute a definition of ‘direct C-implicate {(directly derivable) in K’ (sce, e.g.,
[Semantics] §§ 26~28). Now it is possible, although not customary, to apply an
exactly analogous method in semantics, with respect to a semantical system 5.

- Essentially the same rules are here formulated as definition of ‘direct L-impli-
cate in §°. [Instead of constructing a chain leading from the premise ¢ to %
(called a derivation in the technical sense) one may also construct a chain with-
out 2 premise leading to ¢ J % (called a derivation with the null class of prem-
ises or a proof in the technical sense; see [Semantics] § 26, formulation B); the
-difference is merely a technical one, the result is the same (for languages with-
out free variables in sentences), see T2o-1b.] Even if this method is used in a
symbolic language for which explicit rules of deduction have been laid down,
the proofs are rarely given in a complete form. They usually proceed by larger
steps, such that each step consists of several applications of the rules and hence
would be divided into several steps in a complete formulation. This abbre-

* viated formulation is, of course, convenient and even necessary in order to avoid
enormous length of the proofs. In many cases, the object language used in
methiod (i) is the ordinary word language (supplemented by some technical
terms and symbols) without explicit rules of deduction; and in almost all cases
this holds for the metalanguage used in method (ii). This is customary for the
formulations of deductions in mathematics and in science. Likewise in this
book, we use method (ii}; the proofs are formulated in the word language as
our metalanguage (as an example, see the proof of T1g-3). Thus, in all these
cases, the method of examining the proofs has only the weaker and somewhat
vague practical effectiveness described above.

b. Inductive logic. Given: e, %, and r, and an alleged proof that ¢(h,e) =
7; wanted: an answer to the question whether the alleged proof is correct.
For instance, a physicist believes he has found a solution of a problem of
the first kind, say, a suitable hypothesis % on the basis of an observational
report e, and, moreover, a solution of the problem of the second kind for

1
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this case, viz., what appears to him like a proof that c(%,e) = r; he wants
to determine whether this is a correct proof. For the solution of this prob-
lem, as for the analogous problem in deductive logic, there is a procedure
which is at least practically effective. However, there is this difference: of
the two methods (i) and (ii} earlier described, there is an analogue here
only to the second, that is, a proof in the metalanguage for the semantical
sentence ‘c(#,e) = #’. No analogue to the first method is known; and it
seems doubtful whether a simple and convenient method of this kind
could be found. [One might perhaps think of a procedure consisting in the
construction of a sequence of sentences, with a real number expression
attached to each sentence expressing the ¢ of that sentence on the fized
evidence e. The sentence ¢ itself with ‘1’ attached to it would be the be-
ginning of the sequence, and % with an expression for the number 7 at-
tached to it would be the end. The sentences would belong to the object
language, as in a proof in method (i), but the nuimerical expressions would
still be in the metalanguage.] Thus the situation is here the same as de-

scribed earlier for method (i} in deductive logic. A proof is given, formu-

lated in the word language, which serves as a semantical metalanguage;
and we test the correctness of the proof by examining for each step
whether it is valid on the basis of the tacitly presupposed standards. Thus
the procedure is practically effective in just the same sense as explained
earlier (although it is not effective in the strictest sense unless deductive
rules are laid down for the metalanguage).

B. The Relation between Deductive and Inductive Logic

Deductive logic may be regarded as the theory of the L-concepts,
especially L-implication. These concepts can be based on the semantical
concept of range, as we have seen (§ 20). Thus deductive logic, in this
sense, is seen to be a part of semantics, that part which we sometimes call
L-semantics. Inductive logic, in its quantitative form, may be regarded
as the theory of c. As we shall see later, ¢ is also based on the concept of
range. The theorems of inductive logic deal not only with ¢ but also with
L-implication and the other L-concepts. Thus, inductive logic is likewise
a part of semantics; it presupposes deductive logic; it may be regarded as
constructed out of deductive logic by the introduction of the definition
for ¢. In a sense, we may say that the definition of L-implication repre-
sents the rules of deduction; in the same sense, the definition of ¢ repre-
sents the rules of induction. Except for this difference with respect to the
definitions uged, the procedures for constructing proofs for theorems are
the same in inductive logic as in deductive logic. We have earlier spoken

-
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of proofs for theorems of the form ‘e L-implies %’ in deductive logic (see
11Ta, method (ii)), and later of proofs for theorems of the form ‘c(ke) = #°
in inductive logic (see IITb). If we look not at the definitions used but at
the forms of inference used in these two kinds of proof, we find that they
are the same in both cases. Not only in proofs of theorems of deductive
logic but also in those of inductive logic we apply the implicit deductive
procedures which are customarily applied in the word language. Thus
any procedure of proof in any field, also in inductive logic, is ultimately a
deductive procedure. This does not mean, of course, that induction is a
kind of deduction. We must clearly distinguish between theorems of in-
ductive logic, e.g., ‘c(k,8) = 3/4’, and sentences like ¢ and % about which
the theorems speak. The former belong to the metalanguage; the latter
belong to the object language and hence are not a part of inductive logic
but its subject matter. The previous remark concerns only the former;
it means that these theorems, although belonging to inductive logic, are
reached by deduction. On the other hand, the relation between ¢ and %, as
stated by the theorem mentioned, is inductive, not deductive. No deduc-
tive procedure leads from ¢ to %; but, if we may say so, an inductive pro-
cedure, characterized by the number 3/4, connects e with .

The far-reaching analogy which holds between inductive and deductive
logic in spite of the important differences between these two fields were
repeatedly emphasized in the preceding discussions. The principal com-
mon characteristic of the statements in both fields is their independence
of the contingency of facts. This characteristic justifies the application
of the common term ‘logic’ to both fields. The following representation

‘of examples in two paraliel columns will perhaps help in further clarifying

the analogy.

Deductive Logic Inductive Logic

The subsequent statements in deduc- The subsequent statements in induc-

“tive logic refer to these example sen- tivelogicrefer to these example sentences:

tences:
Premise e: ‘All men are mortal, and

Evidence (or premise) e: “The number
Socrates is a man.’

of inhabitants of Chicago is three million;
two million of these have black hair; § is
an inhabitant of Chicago.’

Hypothesis (or conclusion) k- ‘b has
black hair.

The following is an example of an ele-
mentary statement in inductive logie:

L. ‘elhe) = 2/3 (in E)’

Concluston k: ‘Socrates is mortal.’

The following is an example of an ele-
mentary statement in deductive logic:
D:. ‘c L-implies % (in E).’
(E is here either the English language or a

semantical language system based on
English.)
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DEDUCTIVE LoGIC—Continued

D,. The statement D, can be established
by a logical analysis of the meanings of
the sentences ¢ and k%, provided the defini-
tion of L-implication’ is given. _
D, D, is a complete statement. We need
not add to it any reference to specific de-
ductive rules (e.g., the mood Barbara).
However, the definition of ‘L-implication’
is, of course, presupposed for establish-
ing D,

The following is a consequence of D

D,. The question whether the premise ¢
is known (well established, highly con-
firmed, accepted), is irrelevant for D..
This question becomes relevant only in
the application of D: (see Ds and D).

D; follows from D.:
Dy, ‘If ¢ is true, then % is true.’

Ds and Dy are consequences of D con-
cerning opplications to possible knowl-
edge situations. Ds represents the theo-
retical application (that is, the result re-
fers again to the knowledge situation); D,
represents the practical application (that
is, the result refers to a decision).

Ds. ‘If e is known (accepted, well estab-
lished) by the person X at the time f, then
k is likewise.” [Here, ‘to know’ is uynder-
stood in a wide sense, including not only
items of X’s explicit knowledge, that is,

those which he is able to declare explicit-
. Iy, but also those which are implicitly
_contained in X’s explicit knowledge ]

D, ‘If ¢ is known by X at ¢, then a de-
cision of X at / based on the assumption
k is rationally justified)

INDUCTIVE LoGIC—Continued

1. The statement I; can be established by
a logical analysis of the meanings of the
sentences ¢ and #, provided the definition
of ‘degree of confirmation’ is given.

I;. I: is a complete statement. We need -
not add to it any reference to specific in-
ductive rules (e.z., for I, a rule of the di-
rect inductive inference). However, the
definition of ‘degree of confirmation’ is, of
course, presupposed for establishing Iy,

The following is a consequence of I,

1.. The question whether the premise (evi-
dence) ¢ Is known (well established, high-
ly confirmed, accepted), is irrelevant for
I.. This question becomes relevant only
in the application of I; (see Is and I,).

There is here no analogue to D;. From
I, and ‘e is true’ nothing can be inferred
(see § 1oA).

I; and I, are consequences of I. con-
cerning epplications to possible knowledge
situations. Is represents the theoretical
application, I,, the practical application.

Is. ‘If ¢ and nothing else is 2nows by X at
#, then % is confirmed by X at £ to the de-
gree 2/3. [Here, the term ‘confirmed’
does not mean the logical (semantical}
concept of degree of confirmation occur-
ring in D, but a corresponding pragmati-
cal concept; the latter is, however, not
identical with the concept of degree of
(actual) belief but means rather the de-
gree of belief justified by the observa-
tional knowledge of X at £] The phrase
‘and nothing else’ in Is is essential; see .
§ 458 concerning the requirement of total
evidence.

I;. ‘If ¢ and nothing else is known by
X at ¢, then a decision of X at ¢ based on
the assumption of the degree of certainty
2/3 for % is rationally justified (e.g., the
decision to aceept a bet on % with a bet-
ting quotient not higher than 2/3).
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It should be noticed that in inductive logic, just as in deductive logic,
the reference to the knowledge of X does not occur in the purely logical
statements (e.g., I,) but only in the statements of application (Is and I,).
Tt is true that statements of inductive logic, like those of deductive logic,
are usually applied both in everyday life and in science to a premise or
evidence that is known, i.e., well established by observations. Neverthe-
less, it is irrelevant for the validity as distinguished from the practical
value or applicability, of a statement of inductive logic, just as for one

. of deductive logic, whether the evidence is true or not and, if it is true,

whether its truth is known or not.

We shall later (§ 55B) clarify the relation between deductive and induc-
tive logic in still another way with the help of the concept of range. We
shall see that a statement of deductive logic like ‘¢ L-implies #’ means that
the entire range of e is included in that of %, while a statement of induc-
tive logic like ‘c(k,¢) = 3/4’ means that three-fourths of the range of ¢ is
included in that of %. This shows again the similarity and at the same time

- the difference between the two fields.

§ 44, Logical and Methodological Problems

A. With respect to deductive procedures, we distinguish between the prob-
lems of deductive logic proper, including mathematics, and those of the meth-
odology of deduction, The latter concern the choice of suitable deductive pro-
cedures for given purposes. Analogously we distinguish between inductive logic
and methodology of induction. The latter gives no exact rules but only advice
how best to apply inductive procedures for given purposes. Bacon’s and Mill’s
thecries on induction belong chiefly, not to inductive logic, but to the method-
ology of induction. On the other hand, the beginnings of an inductive logic are
found in the classical theory of probability.

B. An inductive inference does not, like a deductive inference, lead to the a¢-
quisition of a new sentence but rather to the determination of a degree of con-
firmation. Inductive inferences usually concern a population {of persons or
things) and samples; in many cases they deal with frequencies (statistical in-
ferences). The principal kinds of inductive inference are briefly characterized:
(1) direct inference, (2) predictive inference, (3) inference by analogy, (3) in-
verse inference, (5) universal inference.

- A. Methodological Problems

In order to clarify the aim of our construction of inductive logic, it
seems useful to emphasize a certain distinction between two kinds of prob-
lems. The problems of the one kind constitute the field which we call induc-
tive logic; the problems of the other kind may be called, for lack of 4 better
term, methodological problems and, more specifically, problems of the
methodology of induction. Before explaining this distinction, let us look at

§ 44. LOGICAL AND METHODOLOGICAL PROBLEMS 203

deductive logic, where an analogous distinction can be made which is easier
to understand. Here we have first the field of deductive logic proper,
including pure mathematics. To this field belong, for instance, the theo-
remsg stated in §§ 20—40 above. Then there is a second field, closely con-
nected but not identical with deductive logic. In this second field, methods
are described for practically carrying out the procedures of deductive logic
and mathematics, and suggestions are made for the use of these methods
in various situations and for various purposes. Here we learn, for instance,
how best to look for a proof of a conjectured theorem or for a simplification
of a given proof; some hints are given as to the conditions under which an
indirect proof may be useful; devices are explained for proving the inde-
pendence of a certain sentence from a given set of postulates, or the con-
sistency of the set, or its completeness; other devices are given for finding
convenient approximating functions for the purpose of numerical calcula-
tions (for example, T40-4 above; this theorem itself and other similar ones
in § 40A belong to mathematics and hence to deductive logic; but the
more or less vague general rules which tell us how to find an approximating
function of this kind when we need it belong to the second field). This sec-
ond field may be called methodology of deductive logic and mathematics.

Analogously, inductive logic (in its quantitative form) contains state-
ments which attribute a certain value of ¢ to a certain case, that is, a pair
of sentences e,4, or speak about relations between values of ¢ in different
cases. On the other hand, the methodology of induction gives advice how
best to apply the methods of inductive logic for certain purposes. We may,
for instance, wish to test a given hypothesis %; methodology tells us which
kinds of experiments will be useful for this purpose by yielding observa-
tional data e, which, if added to our previous knowledge ¢;, will be induc-
tively highly relevant for our hypothesis %, that is, such that c(%,e, . ¢;)
is either considerably higher or considerably lower than ¢(k,¢e;). Sometimes,
not one hypothesis but a set of competitive hypotheses is given, and we
wish to come to an inductive decision among them by finding observa-
tional material which gives to one of the hypotheses a considerably higher
¢ than to the others. In another case, we may have found observational

results which are not explainable by the hypotheses accepted so far and

perhaps even incompatible with one of them; here, we wish to find a new
hypothesis which not only is compatible with the observations but ex-
plains them as well as possible. As explained in the preceding section
{problem I), there is no effective procedure leading to this aim, no more
than there is in mathematics for finding a theorem suitable for a given
purpose. Nevertheless, it is possible in both cases to give some useful
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hints in which direction and by which means to look for a result of the
kind wanted; these hints are given by methodology. Inductive and deduc-
tive logic cannot give them; they are indifferent to our needs and purposes
both in practical life and in theoretical work. By emphasizing the distinc-
tion between logic and methodology, we do not intend to advocate a sepa-
ration of the two kinds of problems within scientific inquiry. They are
usually treated in close connection, and that is very useful. There is hardly
any book in mathematics—except perhaps a table of logarithms—that
does not add to the mathematical theorems some indications as to how they
may usefully be applied either in mathematics itself or in empirical sci-
ence. Similarly, to our later theorems in inductive logic, we shall often
add some remarks about their use. Some of these remarks concern the use
within inductive logic, for instance, the utilization of a given theorem in
proofs of later theorems; other remarks concern the use outside of induc-
tive logic, for instance, the possibility of a practical application either of
inductive logic in general or of a given theorem to knowledge situations.
Remarks of both kinds belong, not to inductive logic itself, but to the
methodology of induction. [Examples of methodological discussions con-
cerning the application of inductive logic in general are our discussions
of the requirements of logical independence and completeness (above,
§ 18B), of the requirement of total evidence (below, § 45B), and the de-
tailed discussions of the application of inductive logic for determining
practical decisions (below, §§ 49—51); examples of methodological re-
marks concerning the application of particular theorems to possible

~ knowledge situations are found at many places in the subsequent chapters,

e.g., in §§ 6o, 61, and generally whenever in the comments on given theo-
rems terms like ‘observation’, ‘known’, ‘unknowr’, ‘expectation’, ‘pre-
diction’, ‘decision’, ‘betting’, and similar ones occur.] However, the prin-
cipal purpose of this book is the discussion and, if possible, solution of
problems of inductive logic itself; in other words, the proof of theorems

. on the degree of confirmation. The discussions of problems of the method-
. ology of induction, on the other hand, are only incidental, although for

practical reasons they may be useful and sometimes even indispensable.

* A theoretical book on geometry need not discuss in detail, if at all, the

application of geometrical theorems for the calculation of the area of a
garden or the distance of the moon, because the reader can be expected to
be familiar with the connection between theoretical geometry and its ap-
plication to spatial relations of physical bodies. In the case of inductive
logic, on the other hand, there is at the present time not yet sufficient
clarity and agreement even among the writers in the field concerning the
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nature of the theory and the connection between theory and practical
application. Therefore today a book on inductive logic is compelled to
devote a considerable part of its space to a discussion of methodological

problems. . '
One of the purposes in emphasizing the distinction between inductive

logic proper and the methodology of induction is to make it clear that
certain books, investigations, and discussions concerning induction do not
belong to inductive logic although they are often attributed to it. This
holds in particular for the works of Francis Bacon and John Stuart Mill;
their discussions on induction, including Mill’s methods of agreement,
difference, etc., belong chiefly to the methodology of induction and give
hardly a beginning of inductive logic. On the other hand, the beginnings
of a systematic inductive logic can be found in another class of works,
some of them written a long time before Mill, although in many of these
works the word ‘induction’ does not even occur. I am referring to all
those works which deal with the theory of probability;; as previously ex-
plained (§ 12), most of the classical works on the theory of probability
belong to this class, as do most of those modern books on probability which
are not based on the frequency conception of probability. In most of
these theories, probability has numerical values; hence, they are systems
of quantitative inductive logic. Keynes’s theory is an example of a com-
parative inductive logic supplemented by a very restricted part of quan-
titative inductive logic, since, according to his conception, probability has
numerical values only in some cases of a special kind, while in general only

* a comparison is possible leading to the result that one hypothesis is more

probable than another. Jeffreys starts with axioms on the primitive notion
‘siven p, ¢ is more probable than #’, hence with a comparative inductive
logic; on its basis, a quantitative inductive logic is constructed by laying
down conventions for the assignment of numerical values.

B. Inductive Inferences

What we call inductive logic is often called the theory of nondemonstra-
tive or nondeductive inference. Since we use the term ‘inductive’ in the
wide sense of ‘nondeductive’, we might call it the theory of indictive in-
ference. We shall indeed often speak of inductive inferences because the
term is customary and convenient. However, it should be noticed that the
term. ‘inference’ must here, in inductive logic, not be understood in the
same sense as in deductive logic. Deductive and inductive logic are analo-
gous in one respect: both investigate logical relations between sentences;
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the first studies the relation of L-implication, the second that of degree of
confirmation which may be regarded as a numerical measure for a partial
L-implication, as we shall see (§ 55B). The term ‘inference’ in its custom-
ary use implies a transition from given sentences to new sentences or an
acquisition of a new sentence on the basis of sentences already possessed.
However, only deductive inference is inference in this sense. If an observer
X has written down a list of sentences stating facts which he knows, then
he may add to the list any other sentence which he finds to be L-implied
by sentences of his list. If, on the other hand, he finds that his knowledge
confirms another sentence to a certain degree, he must not simply add this
other sentence. The result of his inductive examination cannot be formu-
lated by the sentence alone; the value found for the degree of confirma-
tion is an essential part of the result. If we want to give a schematized
(and hence somewhat oversimplified) picture of X ’s procedure, we may
imagine that he writes two lists of sentences; for the sake of simplicity
we assume that the sentences of both lists are molecular. The first list
contains the sentences which he knows; additions to this list are made in
two ways: (¢) basic sentences formulating the results of new observations
which he makes and (b) sentences L-implied by those on the list. Only
the additions of the kind (¢} change the logical content of the list. Let us
assume that the atomic sentences of X’s language are logically independent
of each other (according to the requirement of independence, § 18B).
Then X need never cross out a sentence once written on the first list. The
second list contains inductive results. These are formulated by sentences,
each of them marked with a numerical value, its degree of confirmation
with respect to the first list. These values, however, hold only for a cerfain
time; as soon as a new observation sentence is added to the first list, the
numerical values on the second list have to be revised. These values could
be provided by an inductive machine, into which the observation sen-
tences of the first list, kind (), are fed. (In order to make the procedure
effective and accessible to a machine, it must be restricted to a finite
system.)
_ This picture makes it clear that an inductive inference does not, like a
deductive inference, result in the acquisition of a sentence but in the de-
termination of its degree of confirmation. It is in this sense, and only in
this sense, that we shall use the term ‘inductive inference’ further on.
The most important kinds of inductive inference or, in other words, of
general theorems concerning ¢ deal with cases where either or both of the
sentences ¢ and % give information about frequencies, for instance, in the
form of an individual or statistical distribution (§ 26B) for some indi-
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viduals with respect to a
tistical inductive inferences.
Following the usage of statisticians, we call the class of all those indi-

viduals to which a given statistical investigation refers the population.

Any proper subclass of the population, defined by an enumeration of its

. elements, not by a common property, is called a sample from the popula-

tion. The population need not necessarily consist of human beings; it may
consist of things or events of any kind, persons, animals, births, deaths,
molecules, electrons, specimens of grain, products of a factory, etc. The
population is usually not the whole universe of individuals but only a part
of it. For example, the universe may be the totality of physical things; one
investigation may take as population the present inhabitants of Chicago,
another may take the inhabitants of Boston in 1goo, etc.; the fact that
these and other populations are parts of the same universe of individuals
makes it possible first to formulate these investigations in the same lan-
guage system and also, if desired, to consider later a more comprehensive
population containing the original ones as parts and studying their rela-
tions,

We shall now briefly characterize some of the most important kinds of
inductive inference; they are neither exhaustive nor mutually exclusive.

1. The direct inference, that is, the inference from the population to a
sample. (It might also be called internal inference or downward inference.)
e may state the frequency of a property 3 in the population, and % the
same in a sample of the population. '

2. The predictive inference, that is, the inference from one sample to an-
other sample not overlapping with the first. (It might also be called exter-
nal inference.) This is the most important and fundamental inductive in-
ference. From the general theorems concerning this kind we shall later (in
Vol. IT) derive the theorems concerning the subsequent kinds. The special
case where the second sample consists of only one individual is called
the singular predictive inference. We have indicated earlier (§ 41D) and
we shall show in detail later (T'z08-1) that the results of the singular pre-

dictive 'infcrence stand in a close relation to the estimation of relative

frequency.
3. The inference by analogy, the inference from one individual to an-
other on the basis of their known similarity.

_ 4. The inverse inference, the inference from a sample to the population.
(It might also be called upward inférence.} This inference is of greater im-
portance in practical statistical work than the direct inference because we
usually have statistical information only for some samples actually ob-

ivision. In these cases we might speak of sfa-
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served and counted and not for the whole population. Methods for the in-
verse inference {often called ‘inverse probability’) have been much dis-
cussed both in the classical period and in modern statistics. One of the
chief stimulations for the developments of modern statistical methods
came from the controversies concerning the validity of the classical meth-
ods for the inverse inference.

5. The universal inference, the inference from a sample to a hypothesis
of universal form. This inference has often been regarded as the most im-
portant kind of inductive inference. The term ‘induction’ was in the past
often Testricted to universal induction. Our later discussion will show that
actually the predictive inference is more important not only from the
point of view of practical decisions but also from that of theoretical

science.

§ 45. Abstraction in Inductive Logic

A. The application of logic, which is not a task of logic itself but of methodol-
ogy, has to do with states of observing, believing, knowing, and the like. On
the other hand, logic itself, both deductive and inductive, deals not with these
states but instead with sentences subject to exact rules. Thus logic gains exact-

. ness by abstracting from the vague features of actual situations. B. In the ap-
plication of inductive logic still another difficulty is involved, which does not
concern inductive logic itseli. This difficulty consists in the fact that, if an ob-
server wants to apply inductive logic to an expectation concerning a hypothesis
%, he has to take as evidence ¢ a complete report of all his observational knowl-
edge. Many authors on probability: have not given sufficient attention to this
requirement of tolul evidence. They often leave aside a great part of the available
information as though it were irrelevant. However, cases of strict irrelevance
are much more rare than is usually assumed. C. The simple structure of our
language systems, the earlier requirement of completeness (8 18B), and now
the requirement of total evidence compel us to construct all examples of the
application of inductive logic in a fictitious simplified form. This fact, however,
does not prevent the approximative application of Inductive logic to actual
knowledge sitnations in our actual world, just as certain idealized concepts of
physics can be practically applied. D. Abstractions may be very fruitful and
even necessary for the progress of science, as the example of geometry shows.
Some students reject all abstractions; others use them excessively and neglect
certain features of reality, These extremes are harmful. We should rather com-
bine both tendencies, that emphasizing the concrete as well as that emphasizing
the abstract. As to inductive logic, we should overlook neither the fact that its
ultimate purpose lies in its application in practical life nor the fact that it cannot
be efficient without using abstract methods.

A. Abstraction in Deductive and Inductive Logic

Our theory of inductive logic will be applied not to the whole language
of science with its great complexities, its large variety of forms of expres-
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sion, and its variables of higher levels (e.g., for real numbers), but only
to the simple language systems £ explained in the preceding chapter. This
involves a certain simplification and schematization of inductive proce-
dures in comparison with those actually used in the practice of science.
Other kinds of schematization here involved are still more important;

-they will be discussed in this section. The first of them is inherent in any

logical method; it could not be avoided even if we took the whole language
of science as our object language, and it is a necessary factor even in de-
ductive logic. It consists in the fact that the pure systems of both deduc-
tive and inductive logic refer simply to sentences (or to the propositions
expressed by them) rather than to states of knowing, believing, assuming,
etc., while any aepplication of logic to an actual situation has to do with
these states. This application is outside of pure logic itself; it belongs to
the subject matter of the methodology of logic, as we have seen in the

- preceding section.

Let us first take an example from deductive logic. One of the simplest
theorems of deductive logic says that 7 L-implies i V 7. One kind of appli-
cation of this theorem consists in the following rule, which is not a logical
but a methodological rule: if X has good reasons for believing 7, then the
same reasons entitle him to believe ¢ V 5. This, however, is a crude for-
mulation using ‘believing’ as a classificatory concept. A more adequate
formulation would use it as a quantitative or at least as a comparative
concept: if X at the time # has reasons for a belief in ¢ to the degree #, then
he has at the same time reasons for a belief in 7 V j at least to the degree 7.
For instance, I look at a tree and,.on the basis of what I see, T am con-
vinced that a certain leaf is green; then I have the right to be convinced
at least as strongly that this leaf is green or smooth. In this way, some
rather vague and perbaps even problematic concepts enter the situation.
Am I actually convinced? How am I to measure the strength of my con-
viction or at least to compare two convictions as to their strength? Is the
color I want to express described accurately by ‘green’, or should I per-
haps rather say ‘greenish-blue’? We have here all the vaguenesses and
other difficulties which arise on the way from an observation to the utter-
ance of a corresponding observation sentence and our report about the
belief in it. Within logic, however, all these difficulties do not appear. Not
that they have been overcome; we just leave them outside, we ‘abstract’
from them. The advantage of this procedure is that in logic we deal only
with clear-cut entities without vagueness. We have predicates and they
are assumed to designate properties, and further we have other signs and
their designata. The actual vagueness of the boundary line between green
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and blue is disregarded and likewise the vagueness of the other properties
and all other designata. Furthermore, logic contains other semantical
rules determining the meaning of the sentences on the basis of these
designata (e.g., in the form of rules of ranges, as explained in § x18D).
With the help of these rules, we determine whether or not the relation of
L-implication holds between given sentences, and thus we reach one of the
. chief aims of deductive logic. (For instance, we show that ¢ L-implies
iV j by showing that the range of i is contained in that of i V 7.) All these
procedures within deductive logic deal with neat, clear-cut entities ac-
cording to exact rules and thus are not blurred by any vagueness. How-
ever, we must necessarily pay a price for this advantage; by the abstrac-
tion which we carry out in order to construct our system of logic, we dis-
regard certain features; they remain outside the scope of logic. However,
we must be careful in the characterization of this situation. Some philoso-
" phers say that, in consequence of the abstraction leading to logic or, in a
similar way, to qﬁantitative physics, certain features of reality (for in-
stance, the ‘genuine qualities’ or ‘qualia’) remain forever outside our
grasp. I do not agree with this view; although it sounds similar to what I
said earlier, there is a fundamental difference. This may become clearer by
the following analogy. Suppose a circular area is given, and we want to
cover some of it with quadrangles which we draw within the circle and
which do not overlap. This can be done in many different ways; but,
_whichever way we do it and however far we go with the (finite) procedure,
we shall never succeed in covering the whole circular area. However, it is
not true that—in analogy to the philosophical view mentioned—-there is
any point in the area which cannot be covered. On the contrary, for every
point and even for every finite number of points there is a finite set of
quadrangles covering all of them. The situation with abstraction is analo-
gous. In any. construction of a system of logic or, in other words, of a lan-
guage system with exact rules, something is sacrificed, is not grasped, be-
cause of the abstraction or schematization involved. However, it is not
true that there is anything that cannot be grasped by a language system
and hence escapes logic. For any single fact in the world, a language sys-
tem can be constructed which is capable of representing that fact while
others are not covered. For instance, if we find ourselves unable to describe
a certain subtle difference between two shades of color with simple predi-
cates like ‘green’ and ‘blue’, we may make our net finer and finer by intro-
ducing more and more predicates like ‘bluish-green’, ‘greenish-blue’, etc.,
or by introducing quantitative scales (as in the color systems of W. Ost-
wald or A. C. Hardy); in this way, our language becomes more and more
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precise with respect to colors. Perhaps this process of introducing more
and more precise terms can never come to an end, so that some vagueness
always remains. On the other hand, there is no difference in color shade,
however slight, that remains forever inexpressible.

B. The Requirement of Total Evidence

Suppose that inductive logic supplies a simple result of the form
‘e(k,e) = 7', where % and e are two given sentences and 7 is a given real
number. How is this result to be applied to a given knowledge situation?
This question is answered by the following rule, which is not a rule of in-
ductive logic but of the methodology of induction:

(x) If e expresses the total knowledge of X at the time ¢, that is to say,
his total knowledge of the results of his observations, then X is
justified at this time to believe % to the degree 7, and hence to bet
on % with a betting quotient not higher than ».

One of the decisive points in this rule is the fact that it lays down the
following stipulation: '

(2) Reguirement of tofal evidence: in the application of inductive logic to
a given knowledge situation, the total evidence available must be
taken as basis for determining the degree of confirmation.

There is no analogue to this requirement in deductive logic. If deductive
logic says that e L-implies %z and if X knows e, then he is entitled to assert
irrespective of any further knowledge he may possess. On the other hand,
if inductive logic says that ¢(k,e) = 7, then the mere fact that X knows e
does not entitle him to believe % to the degree r; obviously it is required
either that X know nothing beyond ¢ or that the totality of his additional
knowledge 7 be drrelevant for & with respect to ¢, i.e., that it can be shown
in inductive logic that c(k,e.4) = c¢(k,e). It cannot even be said that X
may believe % at least to the degree #; by the addition of ¢, the ¢ for 2 may

- as well decrease as increase. The theoretical validity of the requirement of

total evidence cannot be doubted. If a judge in determining the proba-
bility of the defendant’s guilt were to disregard some relevant facts
brought to his knowledge; if a businessman tried to estimate the gain to be
expected from a certain deal but left out of consideration some risks he
knows to be involved; or if a scientist pleading for a certain hypothesis
omitted in his publication some experimental results unfavorable to the
hypothesis, then everybody would regard such a procedure as wrong.
The requirement has been recognized since the classical period of the
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theory of probability. Keynes ([Probab.], p. 313) refers to “Bernoulli’s
maxim, that in reckoning a probability, we must take into account all the
information which we have”. Although in the second axiom referred to
by Keynes, Bernoulli speaks in somewhat weaker terms (“everything
that can come to our knowledge” [Ars], p. 214), the formulation of the
third axiom (“Not only those arguments must be considered which are
favorable to an affair but also all those which can be advanced against
- it, so that after pondering both it becomes clear which ones outweigh the
others”, p. 215) and the examples given in connection with both axioms
leave no doubt that the requirement of total evidence is meant. The re-

quirement is expressed more clearly by C. 5. Peirce: “I cannot make a .

valid probable inference without taking into account whatever knowledge
Ihave . . . that bears on the question” ([Theory], p. 461). However, many
writers since the classical period, although presumably acknowledging the
requirement in theory, did not give sufficient attention to it in questions
of practical application. Laplace himself, for instance, raised the following
question: According to the reports of history, the sun has never failed to
rise every twenty-four hours for five thousand years or 1,826,213 days;
what is the probability of its rising again tomorrow morning? Using his
rule of succession, Laplace gave the answer: 1 — 1/1,826,215. Since we
cannot assume that he was unaware of the fact that history reports be-
sideg sunrises also a number of other events, we must conclude that he
either regarded all other known events as irrelevant for his problem or
failed to consider the question of relevance. Many examples of a similar
nature were constructed. Later writers criticized these examples. Aside
from criticisms of the methods used for the solutions, for example, the
rule of succession, the objection was raised that series of events of this
kind are not a proper subject matter for the theory of probability because
we have a causal explanation for them and therefore cannot regard them
as matters of chance. I should prefer to give this objection a different form.
I agree with Laplace against his critics in the view that the theory of
- probability or inductive logic applies to ell kinds of events, including those
which seem to follow so-called causal laws, that is, general formulas of
physics, for instance, in the example of the sun, the laws of mechanics ap-
plied to the earth and the sun. On the other hand, I agree with the critical
judgment of the later writers that Laplace’s application of the theory in
cases of this kind is not correct because our knowledge of mechanics is
disregarded. I would say that the requirement of total evidence is here
violated because there are many other known facts which are relevant
for the probability of the sun’s rising tomorrow. Among them are all those
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facts which function as confirming instances for the laws of mechanics.
They are relevant because the prediction of the sunrise for tomorrow is a
prediction of an instance of these laws.

Modern authors on probability are in general more careful in the con-

struction of their examples; but I think that even they are often not cau- -

tious enough in their tacit or explicit assumptions as to irrelevance. The
cases of strict irrelevance are considerably more rare than is usually be-
lieved. Later, in the construction of our system of inductive logic, ex-
amples will be found where we might be inclined at the first look to assume
irrelevance, while a closer investigation shows that it does not hold.

C. The Applicability of Inductive Logic

We have seen earlier (§ 18B) that the requirement of completeness com-
pels us to imagine for the purpose of the application of inductive logic a
simplified world, a universe which is not more complex in structure or
more abundant in variety than the simple language system which we are
able to manipulate in inductive logic. Now the requirement of total evi-
dence compels us in the construction of examples of application to imagine
in the simplified universe an observer X with a simplified biography.
While every adult person in our actual world has observed an enormous
number of events with an immense variety transcending all possibilities
of complete description, let alone calculatory inductive analysis, we have
to imagine an observer X whose entire wealth of experience is so limited
that it can easily be formulated and taken as a basis for inductive pro-
cedures. Thus, examples of the application of inductive logic must neces-
sarily show certain fictitious features and deviate more from situations
which can actually occur than is the case in deductive logic. This fact,
however, does not make inductive logic a fictitious theory without rele-
vance for science or practical life. A man who wants to calculate the areas
of islands and countries begins with studying geometrical theorems illus-
trated by examples of simple forms like triangles, rectangles, circles, etc.,
although none of the countries in which he is interested has any of these
forms. He knows that by beginning with simple forms he will learn a

method which can be applied also to more and more complex forms ap-

proximating more and more the areas in which he is interested. Analo-
gously, the method of inductive logic, although first applied only to ficti-

tious simple situations, can, if sufficiently developed, be applied to more -

and more complex cases which approximate more and more the situations
in which we find ourselves in real life. Physics likewise uses certain simpli-
fied, idealized conceptions which would hold strictly only in a fictitious



.214 Iv. THE PROBLEM OF INDUCTIVE LOGIC

universe, for example, those of frictionless movement, an absolutely rigid
lever, a perfect pendulum, a mass point, an ideal gas, etc. These concepts
are found to be useful, however, because the simple laws stated for these
ideal cases hold approximately whenever the ideal conditions are approxi-
mately {fulfilled. Similarly, there are actual situations which may be re-
garded as approximately representing the ideal conditions dealt with in
our inductive logic referring to the simple systems €.
~ Suppose, for instance, that spherical balls of equal size are drawn from
an urn; the surface of these balls is in general white, but some are marked
with a red point, others not; some (without regard to whether they have a
red point or not) have a blue point, others not; and some have a yellow
point, others not. A simple inspection does not reveal other differences
between the balls. Then we may apply our system ® to the balls and their
observed marks; we take as individuals the balls, or rather the events of
the appearance of the single balls, abstracting from the fact that the actual
balls have distinguishable parts and that the very markings by which we
- distinguish them are parts of the balls. And we take the three kinds of
markings as primitive properties as though they were the only qualitative
properties of the balls, abstracting from the fact that a careful inspection
of the actual balls would reveal many more properties in which they differ.
Suppose we have drawn one hundred balils and found that forty of them
had the property M of bearing a red point and a blue point. Suppose that
this is all the knowledge we have concerning the balls and that we are in-
terested in the probability of the hypothesis % that the next ball (if and
when it appears) will have the property M. Then we shall take as our
evidence e the observation results concerning the hundred balls just de-
scribed. This is again an idealization of the actual situation because in
fact we have, of course, an enormous amount of knowledge concerning
other things. We leave this other knowledge ¢ aside because we regard it
as plausible that it is not very relevant for % with respect to e, that is to
say, that the value of ¢(%,¢), which we can calculate, does not differ much
from the value of ¢(%,¢ %), which ought to be taken according to the re-
quirement of total evidence but which would make the calculation too
complicated. (Of course, we may be mistaken in the assumption of the
near-irrelevance of 4; that is to say, a closer investigation might show that,
in order to come to a sufficient approximation, certain other parts of the
available knowledge must be included in the evidence; just as a physicist
who assumes that the influence of the friction in a certain case is so small
that he may neglect it may find by a cleser analysis that its influence is
considerable and therefore must be taken into account.) If the temporal
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order of the hundred ball drg#rings is known and seems to be relevant (for
instance, if the sequence gfthe colors in their temporal order of appearance
shows a high degree_ef regularity), then we shall include in our evidence
the description 8t this order according to one of the methods eatlier ex-
plained (§ 15B). If the temporal order of the hundred drawings is not
known (for instance, if we counted only the number of each kind without
paying attention to the order) or if it is known but assumed to be not very
relevant, then we shall take as evidence the conjunction of three hundred
sentences, each of which says of one of the hundred balls whether or not it
has one of the three primitive properties. It will even be sufficient to take
as evidence a conjunction of one hundred sentences, each of which says of
one of the hundred balls whether or not it is M. For certain rules of induc-
tion or definitions of degree of confirmation, it can be shown that the
additional knowledge contained in the three hundred sentences is strictly
irrelevant in this case,

Let us suppose that we have decided to take the latter conjunction of
one hundred sentences concerning M and non-M as our evidence e. Then
a system of inductive logic, although formulated for a simplified universe,
may be applied to the actual knowledge situation just described. The ap-
plication consists in calculating the value of the degree of confirmation ¢
for the hypothesis % and the evidence ¢ specified and taking this value as
the probability sought.

It is important to recognize clearly the nature of the difficulties which .

have just been explained. They do not occur in inductive logic itself but
only in the application of inductive logic to actual situations of knowl-
edge; hence they belong to the methodology of induction. Like deductive
logic, inductive logic has to do only with clear-cut entities without any
vagueness; it deals with sentences of a constructed language system; it
ascribes to a pair of sentences %,¢ a real number 7 as the degree of con-
firmation according to exact rules. Here, as in deductive logic, the exact-
ness, the freedom from vagueness, is obtained by abstraction and there-
fore at a sacrifice.

D. Dangers and Usefulness of Abstraction

Some scientists and philosophers feel a strong disinclination against all
abstractions or schematizations. They demand that any methodological
or even logical analysis of science should never lose sight of the actual be-
havior of scientists both in the laboratory and at the desk. They warn
against neglecting any of the factors which a good scientist takes into con-
sideration in inventing and testing his hypotheses; they emphasize that
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the complex judgment on the acceptability of a hypothesis cannot be
based on just one number, the degree of confirmation. I think that this
view contains a correct and important idea. Whenever we make an ab-
straction, we certainly ought to be fully aware of what we are doing and
not to forget that we leave aside certain features of the real processes and
that these features from which we abstract at the moment must not
be entirely overlooked but must be given their rightful place at some point
" in the full investigation of science. On the other hand, if some authors
exaggerate this valid requirement into a wholesale rejection of all ab-
stractions and schematizations, an attitude which sometimes develops
into a veritable abstractophobia, then they deprive science of some of its
most fruitful methods.

The history of science is full of examples for the usefulness and immense
fertility of abstractions. One of the most outstanding examples is geome-
try. It was created by an act of abstraction: attention was directed toward
the spatial properties and relations of bodies, while all other properties,
color, substance, weight, etc., were disregarded. Then another bold step
was taken, leading away from the world of concrete things with their di-
rectly observable properties to a schema consisting of constructs: geome-
try was transformed into a theory of certain spatial configurations whose
properties are completely and exactly determined. This geometry no
longer deals with wooden or iron balls but with spheres, perfect spheres
of which the balls are only more or less rough approximations. It deals
with infinite straight lines, of which at best some finite segments are
approximately represented by certain threads and edges of bodies. Both
these steps of abstraction were taken in ancient times; we will not
discuss here some later steps which went even much farther in the same
direction by transforming geometry into a theory of certain sets of real
numbers (Descartes), into a formal axiom system (Hilbert), and finally
into a special branch of the logic of relations (Russell). The important
point for our discussion appears already in the effect of the first two steps

- of abstraction. Today it is clear that the magnificent development of
geometry through its history of more than two thousand years would
have been impossible without those abstractions and that the develop-
ment of physics would have been impossible without that of geometry.
Thus the end result is that, not only from the point of view of the mathe-
matician but also from that of the physicist, the abstractions in geometry
are immensely useful and even practically indispensable. Although the aim
remains the investigation not of the abstract configurations but of the
observable spatial properties of concrete things, nevertheless it turns out

_/
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that abstract geometry supplies the most efficient method for this investi-
gation, much more efficient than any method dealing directly with ob-

- servable spatial properties. Numerous other methods of abstraction or

schematization have proved fruitful in physics. This shows that, if we
want to obtain knowledge of the things and events of our environment as
a help for our decisions in practical life, then the roundabout way which
leads first away from these things to an abstract schema may in the long
run be better than the direct way which stays close to the things and their
observable properties.

The situation in logic is analogous. Both in deductive and in inductive
logic we deal with abstract schemata, with sentences which belong to

constructed language systems and are manipulated according to exact

rules. This is admittedly a step away from the actual situations of observ-
ing, believing, etc., in which we find ourselves in practical life. The choice
of this procedure is not based on the assumption that the actual situa-
tions are unimportant and that the exact schemata are all that matters.
On the contrary, the final aim of the whole enterprise of logic as of any
other cognitive endeavor is to supply methods for guiding our decisions
in practical situations. (This does, of course, not mean that this final aim
is also the motive in every activity in logic or science.) But here, as in

i

physics, the roundabout way through an abstract schema is the best way |,
also for the practical aim. Some philosophers who shy away from all !

abstractions have suggested that in the logical analysis of science we |
should not make abstractions but deal with the actual procedures, ob--

servations, statements, etc., made by scientists; we should give up the

concept of truth as defined in pure semantics with respect to a constructed - -
language system and use instead the pragmatical concept ‘accepted (or -

verified or highly confirmed) by X at the time #'; likewise, instead of the
semantical concept of L-truth (see § 20), we should use a related prag-
matical concept defined in about this way: ‘% is a sentence of such a kind
that, for any sentence 7, the utterance of the conjunction .7 by X to ¥
has the same effect on ¥ as the utterance of § alone’. A theory of prag-
matical concepts would certainly be of interest, and a further develop-
ment of such a theory from the present modest beginnings is highly de-
sirable. However, I think the repudiation of pure radical semantics and
L-semantics, and thereby both of pure deductive and of inductive logic,
in favor of a merely pragmatical analysis of the language of science would
lead to a method of very poor efficiency, analogous to a geometry re-
stricted to observable spatial properties. Inductive logic deals with
schemata; but it is developed not for the sake of these schemata, but
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finally for the purpose of giving help to the man who wants to know how
certain he can be that his crop will not be destroyed by a drought, to the
insurance company which wants to calculate a premium rate for life in-
surance that is not too high but still profitable, to the engineer who wants

" to find the degree of certainty that the bridge he constructs will be able to

carry a certain load, to the physicist who wants to find out which of a set

" of competing theories is best supported by the experimental results known
" to him. The decisive point is that just for these practical applications the

method which uses abstract schemata is the most efficient one.

One of the factors contributing to the origin of the controversy about
abstractions is a psychological one; it is the difference between two con-
stitutional types. Persons of the one type (extroverts) are attentive to and

‘have a liking for nature with all its complexities and its inexhaustible

richness of qualities; consequently, they dislike to see any of these quali-
ties overlooked or neglected in a description or a scientific theory. Persons
of the other type (introverts) like the neatness and exactness of formal
structures more than the richness of qualities; consequently, they are in-

 clined to replace in their thinking the full picture of reality by a simplified

schema. In the field of science and of theoretical investigation in general,
both types do valuable work; their functions complement each other, and
both are indispensable. Students of the first type are the best observers;
they call our attention to subtle and easily overlooked features of reality.
They alone; however, would not be able to reach generalizations of a high
level, because abstractions are needed for this purpose. Therefore, a sclence
developed by them alone would be rich in details but weak in power of
explanation and prediction. (This is a warning to those who are afraid of
abstractions, especially in inductive logic.) Students of the second type
are the best originators and users of abstract methods which, when suffi-
ciently developed, may be applied as powerful instruments for the pur-
pose of description, explanation, and prediction. Their chief weakness is
the ever present temptation to overschematize and oversimplify and hence
‘to overlook important factors in the actual situation; the result may be a
theory which is wonderful to look at in its exactness, symmetry, and formal
elegance, and yet woefully inadequate for the task of application for which

it isintended. (This is a warning directed at the author of this book by his

critical super-ego.)

It seems to me that the contrast between the two types, as long as its
expression is a controversy between thesis and antithesis, the danger of
abstractions versus their usefulness, is futile. It may become fruitful if
expressed as a difference in emphasis rather than in assertion; either type

other type. However, it is clear that science can progress only by the co-
operation of both types, by the combination of both directions in the
working method.

The foregoing distinction of two types is a customary but ebviously
oversimplified description of the situation. Instead of speaking of two
types, one directed toward the concrete, the other toward the abstract, .
it would be more correct to apply a continuous scale of comparison: a per-
son X tends less toward the concrete and more toward the abstract than ;
another person ¥. (In other words, a comparative concept is here more -
adequate than the two classificatory concepts; see § 4.)

§ 46. Is a Quantitative Inductive Logic Impossible?

Some students regard a quantitative degree of confirmation and hence a
guantitative inductive logic as impossible because there are very many differ-.
ent factors determining the choice of the “best” hypothesis, and some of them
cannot be numetically evaluated. However, the task of inductive logic is not
to represent all these factors, but only the logical ones; the methodclogical
(practical, technological) and other nonlogical factors lie outside its scope.
Some authers, among them Kries, believe (1) that even the logical factors, for
example, the extension, precision, and variety of the confirming material, are
in principle inaccessible to numerical evaluation; and (2) that it is impossible
to define a quantitative degree of confirmation dependent upon these factors.
The first of these assertions is easily refuted.

The different attitude of the two psychological types discussed above
manifested itself clearly each time in the development of modern sci-
ence when attempts were made to introduce quantitative concepts, meas-
urement, and mathematical methods into a new field, for instance, psy-
chology, social sciences, and biology. Those who made these attempts
were convinced from the beginning that the application of mathematical
methods was possible though perhaps difficult. Even if they had to admit
that the initial steps taken were far from perfect, they were not dis-
couraged; they did not believe that these defects were necessary, due to
an inherent nonquantitative character of the field in question. They ex-
pected that the method could and would be improved and that, when
further developed, it would yield many new results unobtainable by the
traditional methods alone. The opponents, on the other hand, believed
either that it was impossible in principle to apply quantitative concepts
to the special field (“How should it be possible to measure an intensive
magnitude like a degree of intelligence, the intensity of an emotion, the



