Stage-Setting ●	Coherence Requirements for Belief	Extras Refs	Stage-Setting O	Coherence Requirements for Belief ●○○○○○○○○○	Extras	Refs
• Too	lay's talk is about (i) formal, (ii) synchronic, (iii) epistemic	• Here	e is a — perhaps <i>the</i> — "para	digm" CR [29, 31, 28, 23].	
(iv) (i)	coherence (v) requirements (of <i>Formal</i> coherence is to be disting	f ideal rationality). nguished from other sorts of	•	The Consistency Requirement should have <i>sets</i> of beliefs that	t for Belief (CB). Agents t are <i>logically consistent</i> .	
	coherence discussed in contemp some empirical, truth/knowledg	porary epistemology (<i>e.g.</i> , in ge-conducive sense [1]).	• (CB)	follows from the following (narrow-scope) <i>norm</i> :	
	 Our notions of coherence will supervene on <i>logical</i> properties 	l (like deductive consistency) les of judgment sets.	٠	The Truth Norm for Belief (The that are <i>true</i> (<i>i.e.</i> , each <i>individu</i>	 Agents should have belief aal belief should be true). 	s
(ii)	Synchronic coherence has to do	with the coherence of a set	• Alet	hic norms [(CB)/(TB)] can cor	nflict with evidential norms	s.
	of judgments held by an agent a	S at a single time t.	•	The Evidential Norm for Belie	f (EB). Agents should have	
	• So, we'll <i>not</i> be discussing an	y <i>diachronic</i> [32] requirements.		beliefs that are <i>supported by t</i>	he evidence.	
(iii)	<i>Epistemic</i> coherence involves <i>d</i> : (specifically: <i>accuracy</i> [19] and	<i>istinctively</i> epistemic values <i>evidential support</i> [7]).	 In so viola 	ome cases (<i>e.g.</i> , preface cases ating (CB) — this generates a	s), agents satisfy (EB) while n alethic/evidential <i>conflic</i>	: :t.
	 This is to be distinguished free immunity from dutch books 	om <i>pragmatic</i> coherence (<i>e.g.</i> , [30], and the like [18]).	• Such	alethic/evidential conflicts	needn't give rise to states	
(iv)	<i>Coherence</i> has to do with how a together". CRs are <i>wide-scope</i> [3	a set of judgments "hangs 8], global requirements.	that they	receive an (overall) evaluation inevitably give rise to rational	on as irrational (nor must <i>dilemmas</i>) [6, 25, 15, 24].	
(v)	<i>Requirements</i> are <i>evaluative</i> ; th for (ideal) epistemic rationality	ey give <i>necessary</i> conditions of a doxastic state [32].	• We'l the a	l refer to the claim that there datum. Foley's [15] explanati	e exist <i>some</i> such cases as on of <i>the datum</i> is helpful.	
Easwaran & Fitelson	Accuracy, Cohere	nce and Evidence 2	Easwaran & Fitelson	Accuracy, Coher	ence and Evidence	3
Stage-Setting O	Coherence Requirements for Belief ○●○○○○○○○○	Extras Refs	Stage-Setting o	Coherence Requirements for Belief	Extras 000000000000000000000000000000000000	Refs

"...if the avoidance of recognizable inconsistency were an absolute prerequisite of rational belief, we could not rationally believe each member of a set of propositions and also rationally believe of this set that at least one of its members is false. But this in turn pressures us to be unduly cautious. It pressures us to believe only those propositions that are certain or at least close to certain for us, since otherwise we are likely to have reasons to believe that at least one of these propositions is false. At first glance, the requirement that we avoid recognizable inconsistency seems little enough to ask in the name of rationality. It asks only that we avoid certain error. It turns out, however, that this is far too much to ask."

• We will not argue for *the datum* here. We think Foley [15], Christensen [6], Kolodny [25], and others have made a compelling case for it. Today, it is our *point of departure*. But, we do have our own favorite (first-order) Preface case.

Easwaran & Fitelson

Easwaran & Fitelson

4

Evidential Consistency (EC). A judgment set is *evidentially consistent* just in case there exists *some* (*possible*) body of

First-Order Preface Paradox. John is an excellent empirical scientist. He

has devoted his entire (long and esteemed) scientific career to gathering

and assessing the evidence that is relevant to the following first-order,

summarize (all) the evidence that contemporary empirical science takes

masterpiece. Rather than reflecting on his own fallibility, John simply

(inductively) infers H. But, John also believes each of the individual

claims asserted in the main text of the book. Thus, because John

John's **B** is *alethically*, but *not evidentially*, inconsistent.

reflects on the contents of (the main text of) his book, which constitutes *very strong inductive evidence in favor of H*. On this basis, John

believes (indeed, knows) that his masterpiece instantiates the antecedent

of *H*, the (total) set of John's (rational/justified) beliefs is inconsistent.

total evidence *E* which supports each of its members.

empirical hypothesis: (H) all scientific/empirical books of sufficient

complexity contain at least one false claim. By the end of his career, John is ready to publish his masterpiece, which is an exhaustive,

encyclopedic, 15-volume (scientific/empirical) book which aims to

to be relevant to *H*. John sits down to write the Preface to his

0 000€000000 0000000000000000000000000	Stage-Setting Coherence Requirements for Belief Extras Re o 000000000000000000000000000000000000
• Some philosophers construe <i>the datum</i> as reason to believe	• We begin with some background assumptions/notation.
that (*) there are no coherence requirements for full belief.	• $B(p) \leq S$ believes that $p. D(p) \leq S$ disbelieves that p .
 Christensen [6] thinks (a) <i>credences</i> do have coherence requirements (<i>probabilism</i>); (*) full beliefs do <i>not</i>; (b) what <i>seem</i> to be CRs for full belief can be explained <i>via</i> (a). 	 <i>S</i> makes judgments regarding propositions in a (finite) <i>agenda</i> (<i>A</i>) of (classical, possible-worlds) propositions. We'll use "B" to denote the <i>set</i> of <i>S</i>'s judgments on <i>A</i>.
 Kolodny [25] agrees with (*), but he disagrees with (a) and (b). He thinks (c) full belief is <i>explanatorily indispensable</i>; (d) there are <i>no</i> coherence requirements for <i>any</i> judgments; (e) 	 We're only evaluating <i>explicit judgments</i> (<i>on</i> A) — we assume nothing about off-agenda commitments. We'll make two key assumptions about B/D on A. The first
 what <i>seem</i> to be CRs for full belief can be explained <i>via</i> (EB). Christensen & Kolodny <i>agree</i> — <i>trivially</i>, <i>via</i> (*) — that: 	assumption is integral to the framework. The second assumption is made for simplicity (and can be relaxed).
(†) <i>If</i> there are <i>any</i> coherence requirements for full belief, <i>then</i> (CB) is a coherence requirement for full belief.	• Accuracy conditions. <i>B</i> (<i>p</i>) [<i>D</i> (<i>p</i>)] is accurate iff <i>p</i> is T [F].
• We [2, 12] agree with Christensen on (a) and Kolodny on (c),	• Opinionation . $B(p) \lor D(p)$.
but we disagree with them on (\star) , (d), (e), and (†). We'll	• See Extras (27) for Kenny's [11] relaxation of Opinionation.
explain how to ground "conflict-proof" CRs for full belief, by analogy with Joyce's [22, 20] argument(s) for probabilism.	• We will assume <i>belief/world independence</i> . [Extras (15) contains a problematic example in which this assumption fails.]
Easwaran & FitelsonAccuracy, Coherence and Evidence6	Easwaran & Fitelson Accuracy, Coherence and Evidence
Stage-Setting Coherence Requirements for Belief Extras Refs	Stage-Setting Coherence Requirements for Belief Extras Re
0 000000000000000000000000000000000000	o 000000000000000000000000000000000000
 Now, we can explain how our new CRs were discovered, by analogy with Joyce's [22, 20] argument(s) for probabilism. 	• Given our choices at Steps 1 and 2, there is <i>a</i> choice we can make at Step 3 that will yield (CB) as a requirement for B .
• Both arguments can be seen as involving three key steps.	Possible Vindication (PV). There exists some possible world w at which all of the judgments in B are accurate. Or, to put
• Step 1: Define \mathbf{B}_w — the vindicated (viz., alethically ideal or	$\mathbf{f}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}} + $
perfectly accurate) judgment set (on A) at world w	this more formally, in terms of a : $(\exists w)[a(\mathbf{B}, \mathbf{B}_w) = 0]$.
<i>perfectly accurate)</i> judgment set (on \mathcal{A}), at world w .	 Possible vindication is <i>one</i> way we could go here. But, our framework is much more general than the classical one. It
 <i>perfectly accurate</i>) judgment set (on A), at world w. B_w contains B(p) [D(p)] iff p is true (false) at w. Heuristically, we can think of B_w as the set of judgments 	 Possible vindication is <i>one</i> way we could go here. But, our framework is much more general than the classical one. It allows for many other choices of fundamental principle.
 <i>perfectly accurate</i>) judgment set (on A), at world w. B[*]_w contains B(p) [D(p)] iff p is true (false) at w. Heuristically, we can think of B[*]_w as the set of judgments that an omniscient agent would have (on A, at w). 	 Possible vindication is <i>one</i> way we could go here. But, our framework is much more general than the classical one. It allows for many other choices of fundamental principle. Like Joyce [22, 20] — who makes the analogous move with
 <i>perfectly accurate</i>) judgment set (on A), at world w. ^B_w contains B(p) [D(p)] iff p is true (false) at w. Heuristically, we can think of ^B_w as the set of judgments that an omniscient agent would have (on A, at w). Step 2: Define d(B, ^B_w) — a measure of distance between B and ^B_w. That is, a measure of B's <i>distance from vindication</i>. 	 Possible vindication is <i>one</i> way we could go here. But, our framework is much more general than the classical one. It allows for many other choices of fundamental principle. Like Joyce [22, 20] — who makes the analogous move with credences, to ground probabilism — we retreat from (PV) to the weaker: <i>avoidance of (weak) dominance in d</i>(B, B_w).
 <i>perfectly accurate</i>) judgment set (on A), at world w. B̂_w contains B(p) [D(p)] iff p is true (false) at w. Heuristically, we can think of B̂_w as the set of judgments that an omniscient agent would have (on A, at w). Step 2: Define d(B, B̂_w) — a measure of distance between B and B̂_w. That is, a measure of B's <i>distance from vindication</i>. d(B, B̂_w) ≝ the number of inaccurate judgments in B at w. 	 Possible vindication is <i>one</i> way we could go here. But, our framework is much more general than the classical one. It allows for many other choices of fundamental principle. Like Joyce [22, 20] — who makes the analogous move with credences, to ground probabilism — we retreat from (PV) to the weaker: <i>avoidance of (weak) dominance in d</i>(B, B_w). Weak Accuracy-Dominance Avoidance (WADA).
 <i>perfectly accurate</i>) judgment set (on A), at world w. B̂_w contains B(p) [D(p)] iff p is true (false) at w. Heuristically, we can think of B̂_w as the set of judgments that an omniscient agent would have (on A, at w). Step 2: Define d(B, B̂_w) — a measure of distance between B and B̂_w. That is, a measure of B's <i>distance from vindication</i>. d(B, B̂_w) ≝ the number of inaccurate judgments in B at w. Hamming distance [9] between the binary vectors B, B̂_w. 	 Possible vindication is <i>one</i> way we could go here. But, our framework is much more general than the classical one. It allows for many other choices of fundamental principle. Like Joyce [22, 20] — who makes the analogous move with credences, to ground probabilism — we retreat from (PV) to the weaker: <i>avoidance of (weak) dominance in d</i>(B, B_w). Weak Accuracy-Dominance Avoidance (WADA).
 <i>perfectly accurate</i>) judgment set (on A), at world w. B̂_w contains B(p) [D(p)] iff p is true (false) at w. Heuristically, we can think of B̂_w as the set of judgments that an omniscient agent would have (on A, at w). Step 2: Define d(B, B̂_w) — a measure of distance between B and B̂_w. That is, a measure of B's <i>distance from vindication</i>. d(B, B̂_w) riangle the number of inaccurate judgments in B at w. Hamming distance [9] between the binary vectors B, B̂_w. Step 3: Adopt a <i>fundamental epistemic principle</i>, which 	• Possible vindication is <i>one</i> way we could go here. But, our framework is much more general than the classical one. It allows for many other choices of fundamental principle. • Like Joyce [22, 20] — who makes the analogous move with credences, to ground probabilism — we retreat from (PV) to the weaker: <i>avoidance of (weak) dominance in d</i> (B , \mathring{B}_w). Weak Accuracy-Dominance Avoidance (WADA). There does <i>not</i> exist an alternative belief set B ' such that: (i) $(\forall w)[d(\mathbf{B}', \mathring{B}_w) \leq d(\mathbf{B}, \mathring{B}_w)]$, and (ii) $(\forall w)[d(\mathbf{B}', \mathring{B}_w) \leq d(\mathbf{B}, \mathring{B}_w)]$
 <i>perfectly accurate</i>) judgment set (on A), at world w. B̂_w contains B(p) [D(p)] iff p is true (false) at w. Heuristically, we can think of B̂_w as the set of judgments that an omniscient agent would have (on A, at w). Step 2: Define d(B, B̂_w) — a measure of distance between B and B̂_w. That is, a measure of B's <i>distance from vindication</i>. d(B, B̂_w) riangle the number of inaccurate judgments in B at w. Hamming distance [9] between the binary vectors B, B̂_w. Step 3: Adopt a <i>fundamental epistemic principle</i>, which uses d(B, B̂_w) to ground a coherence requirement for B. 	 Possible vindication is <i>one</i> way we could go here. But, our framework is much more general than the classical one. It allows for many other choices of fundamental principle. Like Joyce [22, 20] — who makes the analogous move with credences, to ground probabilism — we retreat from (PV) to the weaker: <i>avoidance of (weak) dominance in d</i>(B, B_w). Weak Accuracy-Dominance Avoidance (WADA). There does <i>not</i> exist an alternative belief set B' such that: (i) (∀w)[d(B', B_w) ≤ d(B, B_w)], and (ii) (∃w)[d(B', B_w) < d(B, B_w)].
 <i>perfectly accurate</i>) judgment set (on A), at world w. B̂_w contains B(p) [D(p)] iff p is true (false) at w. Heuristically, we can think of B̂_w as the set of judgments that an omniscient agent would have (on A, at w). Step 2: Define d(B, B̂_w) — a measure of distance between B and B̂_w. That is, a measure of B's <i>distance from vindication</i>. d(B, B̂_w) ≝ the number of inaccurate judgments in B at w. Hamming distance [9] between the binary vectors B, B̂_w. Step 3: Adopt a <i>fundamental epistemic principle</i>, which uses d(B, B̂_w) to ground a coherence requirement for B. This last step is the philosophically crucial one 	• Possible vindication is <i>one</i> way we could go here. But, our framework is much more general than the classical one. It allows for many other choices of fundamental principle. • Like Joyce [22, 20] — who makes the analogous move with credences, to ground probabilism — we retreat from (PV) to the weaker: <i>avoidance of (weak) dominance in d</i> (B , B _w). Weak Accuracy-Dominance Avoidance (WADA). There does <i>not</i> exist an alternative belief set B ' such that: (i) $(\forall w)[d(\mathbf{B}', \mathbf{B}_w) \le d(\mathbf{B}, \mathbf{B}_w)]$, and (ii) $(\exists w)[d(\mathbf{B}', \mathbf{B}_w) < d(\mathbf{B}, \mathbf{B}_w)]$. • Completing Step 3 in this way reveals new CRs for B

Stage-Setting Coherence Requirements for Belief Extras 0 000000000000000000000000000000000000	Refs	Stage-Setting 0	Coherence Requests	uirements for Belief	Extras 000000000	000000000	Refs
• Ideally, we want a coherence requirement the	nat [like (CB)] can	• Here	are the logic	cal relationships	between key	v norms:	
be motivated by considerations of <i>accuracy</i> is <i>entailed by</i> alethic requirements such as	v (<i>viz.</i> , a CR that TB/CB/PV).		Truth Norm	n for Belief:		(TB) ↓ ∲	
But, in light of (<i>e.g.</i>) preface cases, we also we also we aker than (CB). More precisely, we want a	want a CR that is a CR that is	∎3⊋	Consistency Weak Accur	y Norm for Belies	f (<i>viz.</i> , PV): Avoidance:	$(CB)/(PV)$ $\downarrow \not\uparrow$ $(WADA)$	
weaker than (CB) in such a way that it is also	o entailed by (EB).	■ ~ 3	Weak Piecui	acy Dominance	rivolutilee.	↑ ₩	
 We can show that our new CRs [<i>e.g.</i>, (WADA if we assume the following "probabilistic-ev necessary condition for the satisfaction of (۸)] fit the bill, videntialist" ΈΒ).		Evidential N	Norm for Belief:	(FR)	(EB)	
Necessary Condition for Satisfying (EB). All judgments in B are <i>supported by the ev</i>	B satisfies (EB), <i>i.e.</i> , <i>idence</i> , only if:		(CB)	\downarrow \downarrow $/(PV)$	(ED) ↓ (EC)		
(\mathcal{R}) There exists <i>some</i> Pr-function that proba Pr greater than $1/2$ to) each belief in B and (<i>i.e.</i> , assigns Pr less than $1/2$ to) each disb	bilifies (<i>i.e.</i> , assigns d dis-probabilifies elief in B .						
 "Probabilistic-evidentialists" will disagree al undergirds (EB) [5, 33, 16, 21]; but, they agre Indeed, advacates of (PrF) will hold that (FR 	bout which $Pr(\cdot)$ e on (EB) $\Rightarrow (\mathcal{R})$.			↓ (WADA)		
Easwaran & Fitolson Accuracy. Cohorence and Evidence	$(EC) \Rightarrow (K).$	• See S	lide #18 for	a bigger map w/	11 requirem	ents/norms.	11
		Luowurun er meison		Accuracy, concre			
Stage-Setting Coherence Requirements for Belief Extras	Refs	Stage-Setting 0	Coherence Req	uirements for Belief	Extras 00000000	000000000	Refs
 There are many advantages to adopting (<i>R</i>) (WADA), as our (ultimate) CR for full belief. First. (WADA) is (intuitively) <i>too weak</i> to see the second s	, rather than Here are a few: erve as our	 It is urequired 	useful to dra rements we' nal choice th	w an analogy be 've been discuss heory. The Decis	tween the no ing, and prin ion-Theoreti	orms and ciples in c Analogy.	
(ultimate) $CR - \{B(p), B(\neg p)\}$ may be <i>not</i>	n-dominated, as	Epistemic I	Principle	Analogous I	Decision-Theore	etic Principle	
the following table reveals (ditto for $\{D(p)\}$	$(\neg p)$).	(TB	3) (A	MU) Do ϕ only if ϕ	maximizes utili	ity in the <i>actual</i>	world.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(CB	3) (P	PMU) Do ϕ only if ϕ	maximizes u in	n <i>some possible</i> v	vorld.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(R	.) (1	MEU) Do ϕ only if ϕ	maximizes EU	(relative to some	e Pr).
• $(\mathcal{R}) \Rightarrow (\text{NCP}) D(n) = B(\neg n)$ which rules-ou	ut $\{R(n) R(\neg n)\}$	(WAI	DA) (V	WDOM) Do ϕ only if	ϕ is not weakly	<i>y dominated</i> in u	tility.
(20) (101) D(10) = D(100), (111) (20)	$(D(p), D(\neg p)).$	(SAD	DA) (S	SDOM) Do ϕ only if	ϕ is not strictly	<i>dominated</i> in ut	tility.
 (<i>R</i>) is strictly stronger than (WADA) + (NC conjecture that (<i>R</i>) is the strongest CR (ur entailed by both alethic and evidential considered and evidential considered (<i>R</i>) entails (WADA_d), for any additive distance 	<i>CP).</i> Indeed, we acontroversially) asiderations. <i>ance measure d.</i> In	• Like ((CB), also l	(TB), (AMU) i (PMU) isn't a like (CB), see	is <i>not</i> a <i>requiren</i> a rational require ring this requires	nent of ratior ement either s "paradoxica	<i>aality</i> ; and, lik . Moreover, al" cases [26].	e
 this sense, (<i>R</i>) is <i>robust</i> across choices of (WADA) only makes sense for <i>finite</i> agendary potentially applicable to <i>infinite</i> agendas (in the sense of the sense) 	d. as, whereas (\mathcal{R}) is if there be such).	 As Fo and (' only t 	oley (<i>op. cit.</i>) WADA) are <i>i</i> those propo	explains, (CB) is not — they do not sitions that are (<i>too demand</i> ot "pressure (close to) cer	<i>ing</i> . But, (<i>R</i>) us to believe tain for us".	
Easwaran & Fitelson Accuracy, Coherence and Evidence	e 12	Easwaran & Fitelson		Accuracy, Cohere	nce and Evidence		13

	0000000000	•000000000000000 0		
 Share require Ryan (whice (SPC)) (NCB) ¬(CP) 	on Ryan [31] gives an argum- irement, which makes use of The Closure of Rational Belief If <i>S</i> rationally believes <i>p</i> at <i>t</i> and entails <i>q</i> , then it would be ration The No Known Contradictions If <i>S</i> knows (at <i>t</i>) that \perp is a log would <i>not</i> be rational for <i>S</i> to be The Conjunction Principle (CP If <i>S</i> rationally believes <i>p</i> at <i>t</i> and then it would be rational for <i>S</i> at <i>s</i> (CRBP) & (NKCP) have anall ch <i>are</i> coherence requirement If <i>p</i> = <i>q</i> , then any B s.t. { <i>B</i> (<i>p</i>), Any B such that { <i>B</i> (\perp)} \subseteq B is <i>t</i> <i>Not</i> every B s.t. { <i>B</i> (<i>p</i>), <i>B</i> (<i>q</i>), <i>D</i> (<i>t</i>)	tent <i>for</i> (CB) as a rational f these three premises. f Principle (CRBP). nd <i>S</i> knows (at <i>t</i>) that <i>p</i> onal for <i>S</i> to believe <i>q</i> at <i>t</i> . s Principle (NKCP). gical contradiction, then it believe \perp (at <i>t</i>). P). nd <i>S</i> rationally believes <i>q</i> at <i>t</i> , to believe $\lceil p \& q \rceil$ at <i>t</i> . logues in our framework hts). But, (CP) does <i>not</i> . $D(q) \} \subseteq \mathbf{B}$ is incoherent. ($(p \& q) \} \subseteq \mathbf{B}$ is incoherent.	 Michael Caie [4] writes about an example involving self-reference, which causes problems for Joyce-style (accuracy-dominance) arguments for <i>probabilism</i>. There are analogous examples for full belief. Consider: (<i>P</i>) <i>S</i> does not believe that <i>P</i>. [¬<i>B</i>(^r<i>P</i>[¬]).] One can argue (Caie-style) that the only non-dominated (opinionated) belief sets on {<i>P</i>, ¬<i>P</i>} are {<i>B</i>(<i>P</i>), <i>B</i>(¬<i>P</i>)} and {<i>D</i>(<i>P</i>), <i>D</i>(¬<i>P</i>)}, which are both <i>ruled-out</i> by (<i>R</i>). <u>w₁ F T - + - × × × × × × × × × × × × × × × × ×</u>	$\frac{D(\neg P)}{\times}$ +
Easwaran & Fitelson	Accuracy, Cohere	ence and Evidence 14 Eas	swaran & Fitelson Accuracy, Coherence and Evidence	15
Stage-Setting	Coherence Requirements for Belief	Extras Refs Stag	ige-Setting Coherence Requirements for Belief Extras	Rote
0	000000000	000000000000000000000000000000000000000		KC13
\mathcal{B}	$\mathbf{B}_1 \mid \mathbf{B}_2$ We have the following	ng four facts regarding B_1 and B_2 :	(TB) S ought believe p iff p is true.	KC13
$\begin{array}{c c} & & & \\ & & & \\ \hline & & \neg X \& \neg Y \\ \hline & & \\ \hline \\ \hline$	\mathbf{B}_1 \mathbf{B}_2 We have the following D D (1) \mathbf{B}_1 is weakly do D D vindication by \mathbf{F} D D counting). Thus	$\circ \bullet \bullet \circ \circ$	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w)[d(\mathbf{B}, \mathring{\mathbf{B}}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w)[d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$.	AC13
$ \begin{array}{c c} & & & \\ \hline \\ & & & \\ \hline & & \\ \hline & & & \\ \hline \\ \hline$	B_1 B_2 We have the following D D (1) B_1 is weakly do D D (2) B_1 is not stricth	\circ or \circ or \circ or \circ or \circ or \bullet or	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w) [d(\mathbf{B}, \mathring{\mathbf{B}}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w) [d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$. (NW ₂ S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [> 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$	
$ \begin{array}{c c} & & & \\ \hline \\ & & & \\ \hline \\ \hline$	\mathbf{B}_1 \mathbf{B}_2 We have the following D D (1) \mathbf{B}_1 is weakly do D D (1) \mathbf{B}_1 is weakly do D D counting). Thus D D (2) \mathbf{B}_1 is not strictly vindication by do	$\circ \bullet \bullet \bullet \circ \bullet$	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w) [d(\mathbf{B}, \mathring{\mathbf{B}}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w) [d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$. (NW ₂ S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [> 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (\Re_r) \exists a probability function $\Pr(\cdot)$ such that, $\forall p \in \mathcal{A}$:	
$ \begin{array}{c c} & \mathcal{B} & \vdots \\ \hline \neg X \& \neg Y & \\ \hline X \& \neg Y & \\ \hline X \& Y & \\ \hline \neg X \& Y & \\ \hline \neg Y & \\ \hline X \equiv Y & \\ \hline - Y & \\ \hline \end{array} $	\mathbf{B}_1 \mathbf{B}_2 We have the following D D (1) \mathbf{B}_1 is weakly do D D (1) \mathbf{B}_1 is weakly do D D counting). Thus D D (2) \mathbf{B}_1 is not strictly D D vindication by a D D vindication by a D D vindication by a D D verified via exha D D verified via exha	$\circ \bullet \bullet$	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w)[d(\mathbf{B}, \mathring{\mathbf{B}}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w)[d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$. (NW ₂ S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [> 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (\Re_r) \exists a probability function $\Pr(\cdot)$ such that, $\forall p \in \mathcal{A}$: $B(p)$ <i>iff</i> $\Pr(p) > r$, and $D(p)$ <i>iff</i> $\Pr(p) < 1 - r$.	
$ \begin{array}{c c} & & B \\ \hline & & & TX \& \neg Y \\ \hline & X \& \neg Y \\ \hline & X \& Y \\ \hline & & & TX \& Y \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	B_1 B_2 We have the following D D (1) B_1 is weakly do vindication by E counting). Thus D D (2) B_1 is not strictly vindication by a verified via exha belief sets over B D D	\circ or o	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w) [d(\mathbf{B}, \mathring{\mathbf{B}}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w) [d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$. (NW ₂ S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [> 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (\Re_r) \exists a probability function $\Pr(\cdot)$ such that, $\forall p \in \mathcal{A}$: $B(p) \text{ iff } \Pr(p) > r$, and $D(p) \text{ iff } \Pr(p) < 1 - r$. (EB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is supported by the (<i>actual</i>) evidence	е.
$ \begin{array}{c c} & \mathcal{B} & \vdots \\ \hline \neg X \& \neg Y & \\ \hline X \& \neg Y & \\ \hline X \& Y & \\ \neg X \& Y & \\ \hline \neg Y & \\ \hline X \equiv Y & \\ \hline \neg X & \\ \hline X & \\ \hline \gamma (X \equiv Y) & \\ \end{array} $	\mathbf{B}_1 \mathbf{B}_2 We have the following D D (1) \mathbf{B}_1 is weakly do D D (1) \mathbf{B}_1 is weakly do D D counting). Thus D D (2) \mathbf{B}_1 is not strictly vindication by a D D (2) \mathbf{B}_1 is not strictly vindication by a D D (2) \mathbf{B}_1 is not strictly vindication by a B B (3) \mathbf{B}_2 is not weakly vindication by a	\circ or or \circ o	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w)[d(\mathbf{B}, \mathring{\mathbf{B}}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w)[d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$. (NW ₂ S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [> 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (\Re_r) \exists a probability function $\Pr(\cdot)$ such that, $\forall p \in \mathcal{A}$: $B(p)$ <i>iff</i> $\Pr(p) > r$, and $D(p)$ <i>iff</i> $\Pr(p) < 1 - r$. (EB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is supported by the (<i>actual</i>) evidence (EC) There is <i>some</i> (<i>possible</i>) <i>E</i> which supports each <i>p</i> in <i>S</i> 's B .	e.
$ \begin{array}{c c} & \mathcal{B} & \vdots \\ \hline \neg X \& \neg Y & \\ \hline X \& \neg Y & \\ \hline X \& Y & \\ \hline \neg X \& Y & \\ \hline \neg Y & \\ \hline X \equiv Y & \\ \hline \neg X & \\ \hline X & \\ \hline \gamma (X \equiv Y) & \\ \hline Y & \\ \hline \end{array} $	\mathbf{B}_1 \mathbf{B}_2 We have the following D D (1) \mathbf{B}_1 is weakly do D D (1) \mathbf{B}_1 is weakly do D D counting). Thus D D (2) \mathbf{B}_1 is not strictly vindication by a D D (2) \mathbf{B}_1 is not strictly vindication by a D D (3) \mathbf{B}_2 is not weakly vindication) by verified via exha B D (3) \mathbf{B}_2 is not weakly vindication) by verified via exha	$\circ \circ $	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w)[d(\mathbf{B}, \mathring{\mathbf{B}}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w)[d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$. (NW ₂ S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w)[> 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (\Re_r) \exists a probability function $\Pr(\cdot)$ such that, $\forall p \in \mathcal{A}$: $B(p)$ <i>iff</i> $\Pr(p) > r$, and $D(p)$ <i>iff</i> $\Pr(p) < 1 - r$. (EB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is supported by the (<i>actual</i>) evidence (EC) There is <i>some</i> (<i>possible</i>) <i>E</i> which supports each <i>p</i> in <i>S</i> 's B . $(\forall w) [\geq 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$	e.
$ \begin{array}{c c} & & & \\ \hline & & \\ \hline & & & \\ \hline \\ \hline$	B_1 B_2 We have the following D D (1) B_1 is weakly do vindication by E counting). Thus D D (2) B_1 is not strictly vindication by a verified via exhat belief sets over B D (3) B_2 is not weakly vindication by verified via exhat belief sets over B D (3) B_2 is not weakly vindication by verified via exhat belief sets over	and belief set over \mathcal{B} (this can be austive search on the set of all \mathcal{B}). Thus, \mathbf{B}_2 satisfies (WADA).	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w) [d(\mathbf{B}, \mathring{\mathbf{B}}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w) [d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$. (NW ₂ S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [> 1/2 of the members of \beta are inaccurate at w]$ (\Re_r) \exists a probability function $\Pr(\cdot)$ such that, $\forall p \in \mathcal{A}$: $B(p)$ <i>iff</i> $\Pr(p) > r$, and $D(p)$ <i>iff</i> $\Pr(p) < 1 - r$. (EB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is supported by the (<i>actual</i>) evidence (EC) There is <i>some</i> (<i>possible</i>) <i>E</i> which supports each <i>p</i> in <i>S</i> 's B . $(\forall w) [\geq 1/2 of the members of \beta are inaccurate at w]$ (NWS) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $\langle \exists w \rangle [r, b] = b$ s.t.: $\langle \exists w \rangle [r, $	e.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B_1 B_2 We have the following D D (1) B_1 is weakly do vindication by E counting). Thus D D (2) B_1 is not strictly vindication by a verified via exha belief sets over B D (2) B_1 is not strictly vindication by a verified via exha belief sets over B D (3) B_2 is not weakly vindication by verified via exha belief sets over B B (3) B_2 is not repres B B (4) B_2 is not repres	ocococococococococococococococococococ	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w) [d(\mathbf{B}, \mathring{\mathbf{B}}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w) [d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$. (NW ₂ S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [> 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (\Re_r) \exists a probability function $\Pr(\cdot)$ such that, $\forall p \in \mathcal{A}$: $B(p)$ iff $\Pr(p) > r$, and $D(p)$ iff $\Pr(p) < 1 - r$. (EB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is supported by the (<i>actual</i>) evidence (EC) There is <i>some</i> (<i>possible</i>) <i>E</i> which supports each <i>p</i> in <i>S</i> 's B . ($\forall w$) [$\geq 1/2$ of the members of β are inaccurate at <i>w</i>] ($\Re w$) [$\geq 1/2$ of the members of β are inaccurate at <i>w</i>]	e.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B_1 B_2 We have the following D D (1) B_1 is weakly do D D (1) B_1 is weakly do D D counting). Thus D D (2) B_1 is not strictly vindication by a D D (2) B_1 is not strictly vindication by a D D (3) B_2 is not weakly vindication) by verified via exha belief sets over B B (3) B_2 is not weakly vindication) by verified via exha belief sets over B B (3) B_2 is not repress 2) by any proba B_2 contains two	$\circ \circ $	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w) [d(\mathbf{B}, \mathring{\mathbf{B}}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w) [d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$. (NW ₂ S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [> 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (\Re_r) \exists a probability function $\Pr(\cdot)$ such that, $\forall p \in \mathcal{A}$: $B(p)$ iff $\Pr(p) > r$, and $D(p)$ iff $\Pr(p) < 1 - r$. (EB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is supported by the (<i>actual</i>) evidence (EC) There is <i>some</i> (<i>possible</i>) <i>E</i> which supports each <i>p</i> in <i>S</i> 's B . ($\forall w) [\ge 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (NWS) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [d(\mathbf{B}', \mathring{\mathbf{B}}_w) \le d(\mathbf{B}, \mathring{\mathbf{B}}_w)] \& (\exists w) [d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$.	e.
$ \begin{array}{c c} & & & \\ \hline \\ & & & \\ \hline & & \\ \hline & & & \\ \hline & & & \\ \hline \\ \hline$	B1B2We have the following D D (1) B_1 is weakly do D D (1) B_1 is weakly do D D (1) B_1 is weakly do D D (2) B_1 is not strictly D D (3) B_2 is not weakly B B (3) B_2 is not weakly D D (3) B_2 is not weakly D D (3) B_2 is not repress B B (4) B_2 is not repress D B B_2 contains two D D D	and $\{D(X \equiv Y), D(\neg(X \equiv Y))\}$.	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w) [d(\mathbf{B}, \mathring{\mathbf{B}}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w) [d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$. (NW ₂ S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [> 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (\Re_r) \exists a probability function $\Pr(\cdot)$ such that, $\forall p \in \mathcal{A}$: $B(p) \text{ iff } \Pr(p) > r$, and $D(p) \text{ iff } \Pr(p) < 1 - r$. (EB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is supported by the (<i>actual</i>) evidence (EC) There is <i>some</i> (<i>possible</i>) <i>E</i> which supports each <i>p</i> in <i>S</i> 's B . ($\forall w) [\geq 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (NWS) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [d(\mathbf{B}', \mathring{\mathbf{B}}_w) \leq d(\mathbf{B}, \mathring{\mathbf{B}}_w)] \& (\exists w) [d(\mathbf{B}', \mathring{\mathbf{B}}_w) < d(\mathbf{B}, \mathring{\mathbf{B}}_w)]$.	e.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B1B2We have the following D D (1) B_1 is weakly do vindication by E counting). Thus D D (2) B_1 is not strictly vindication by a verified via exha belief sets over B D (2) B_1 is not strictly vindication by a verified via exha belief sets over B D (3) B_2 is not weakly vindication) by verified via exha belief sets over B B (4) B_2 is not repres 2) by any proba B_2 contains two $\{D(Y), D(\neg Y)\}$ Therefore, B_2 via	and \mathcal{B}_2 satisfies (WADA). w dominated in distance from \mathcal{B}_2 (this is easily verified by simple \mathcal{B}_2 (this can be \mathcal{B}_1 satisfies (SADA). \mathcal{B}_1 satisfies (SADA). \mathcal{B}_2 dominated (in distance from \mathcal{B}_1 statisfies (WADA). \mathcal{B}_2 satisfies (WADA). \mathcal{B}_2 s	(TB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is true. (PV) $(\exists w)[d(\mathbf{B}, \mathbf{B}_w) = 0]$. That is, B is <i>deductively consistent</i> . (SADA) $\nexists \mathbf{B}'$ such that: $(\forall w)[d(\mathbf{B}', \mathbf{B}_w) < d(\mathbf{B}, \mathbf{B}_w)]$. (NW ₂ S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [> 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ $(\mathcal{R}_r) \exists$ a probability function $\Pr(\cdot)$ such that, $\forall p \in \mathcal{A}$: $B(p) \text{ iff } \Pr(p) > r$, and $D(p) \text{ iff } \Pr(p) < 1 - r$. (EB) <i>S</i> ought believe <i>p</i> iff <i>p</i> is supported by the (<i>actual</i>) evidence (EC) There is <i>some</i> (<i>possible</i>) <i>E</i> which supports each <i>p</i> in <i>S</i> 's B . $(\forall w) [\ge 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (NWS) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [\Delta (\mathbf{B}', \mathbf{B}_w) \le d(\mathbf{B}, \mathbf{B}_w)] \& (\exists w) [d(\mathbf{B}', \mathbf{B}_w) < d(\mathbf{B}, \mathbf{B}_w)]$. (NW1S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [\ge 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (NW1S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [\ge 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (NW1S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [\ge 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (NW1S) $\nexists \beta \subseteq \mathbf{B}$ s.t.: $(\forall w) [\ge 1/2 \text{ of the members of } \beta \text{ are inaccurate at } w]$ (NCP) <i>S</i> disbelieves <i>p</i> iff <i>S</i> believes $\neg p$ [<i>i.e.</i> , $D(p) \equiv B(\neg p)$].	e.

Extras

• The key to our central theorem that $(\mathcal{R}) \Rightarrow$ (WADA) is that our inaccuracy measure $d(\mathbf{B}, \mathbf{B}_w)$ is evidentially proper.

Definition (Evidential Propriety)

Suppose a judgment set J of type J is supported by the evidence. That is, suppose there exists some evidential probability function $Pr(\cdot)$ which represents J (in the appropriate sense of "represents" for sets of type J). If this is sufficient to ensure that J minimizes expected inaccuracy (relative to Pr), according to the measure of inaccuracy $\mathfrak{I}(\mathbf{J}, \mathbf{J}_w)$, then we will say that the measure \mathfrak{I} is **evidentially proper**.

- If an inaccuracy measure is evidentially *im*proper, then some probabilistically representable judgment sets will be ruled out as irrational via accuracy-dominance (WADA).
- This would engender a *conflict* between alethic and evidential requirements for judgment, which is exactly what coherence requirements are *not* supposed to do.
- In our book [13], evidential propriety plays a central role.

• Proof of the central result that $(\mathcal{R}) \Rightarrow$ (WADA).

Let Pr be a probability function that represents **B** in sense of (\mathcal{R}) . Consider the expected distance from vindication of a belief set - the sum of $Pr(w) \cdot d(\mathbf{B}, \mathbf{B}_w)$. Since $d(\mathbf{B}, \mathbf{B}_w)$ is a sum of components for each proposition (1 if **B** disagrees with *w* on the proposition and 0 if they agree), and since expectations are linear, the expected distance from vindication is the sum of the expectation of these components. The expectation of the component for disbelieving p is Pr(p) while the expectation of the component for believing p is $1 - \Pr(p)$. Thus, if Pr(p) > 1/2 then believing p is the attitude that uniquely minimizes the expectation, while if Pr(p) < 1/2 then disbelieving p is the attitude that uniquely minimizes the expectation. Thus, since Pr represents **B**, this means that **B** has strictly lower expected distance from vindication than any other belief set with respect to Pr. Suppose, for *reductio*, that some \mathbf{B}' (weakly) dominates **B**. Then, \mathbf{B}' must be no farther from vindication than **B** in any world, and thus **B**' must have expected distance from vindication no greater than that of **B**. But **B** has strictly lower expected distance from vindication than any other belief set. Contradiction. ∴ **B** must be non-dominated. Fitelson Accuracy, Coherence and Evidence

T	•
Easwaran	Ň

Refs

20

e Requirements for Belief	Extras	Refs
	00000000000000000	

- Proof of the claim that (NWS) \Leftrightarrow (WADA).
 - (\Leftarrow) We'll prove the contrapositive. Suppose that some $S \subseteq B$ is a witnessing set. Let \mathbf{B}' agree with \mathbf{B} on all judgments outside **S** and disagree with **B** on all judgments in **S**. By the definition of a witnessing set, **B**' weakly dominates **B** in distance from vindication $[d(\mathbf{B}, \mathbf{B}_w)]$.
 - (\Rightarrow) [Contrapositive again.] Suppose **B** is dominated, *i.e.*, that there is some \mathbf{B}' that weakly dominates \mathbf{B} in distance from vindication $[d(\mathbf{B}, \mathbf{B}_w)]$. Let $\mathbf{S} \subseteq \mathbf{B}$ be the set of judgments on which **B** and **B**' disagree. Then, **S** is a witnessing set.
- A similar proof can be given for: $(NW_1S) \Leftrightarrow (SADA)$.
- We also know that $(\mathcal{R}) \Rightarrow (NW_2S)$. See next slide for a proof.
 - The converse (NW₂S) $\stackrel{?}{\Rightarrow}$ (\mathcal{R}) remained open for several years, but was recently settled (negatively) — see slide #24.
- One final (positive) result: (\mathcal{R}) is strictly stronger than the conjunction (WADA) & (NCP). See slide #23 for a proof.

Theorem

Proof.

 $(\mathcal{R}) \Rightarrow (NW_2S).$

In our proof (slide #19) of the claim that $(\mathcal{R}) \Rightarrow$ (WADA), we established that if Pr represents **B**, then **B** has strictly lower expected distance from vindication than any other belief set with respect to Pr. Assume, for *reductio*, that **S** \subseteq **B** is a witnessing₂ set for **B**. Let **B**' agree with **B** on all judgments

outside **S** and disagree with **B** on all judgments in **S**. Then by the

that **B** has strictly lower expected distance from vindication than

definition of a witnessing₂ set, \mathbf{B}' must be no farther from

vindication than **B** in any world. But this contradicts the fact

 \mathbf{B}' with respect to Pr. So the witnessing₂ set must not exist.

Belief Extras

Extras

Coherence Requirements for Belief

Extras

Refs

Theorem

(NDB & NCP) \Rightarrow (\mathcal{R}). [In other words, (WADA & NCP) \Rightarrow (\mathcal{R}).]

Proof.

Let there be six possible worlds, $w_1, w_2, w_3, w_4, w_5, w_6$. And, let $\mathcal{A} \triangleq \{p_1, p_2, p_3, p_4\}$, where the p_i are defined as follows.

$p_1 \stackrel{\text{\tiny def}}{=} \{w_1, w_2, w_3\}$	$p_2 \stackrel{\text{\tiny def}}{=} \{w_1, w_4, w_5\}$
$p_3 \stackrel{\text{\tiny def}}{=} \{w_2, w_4, w_6\}$	$p_4 \stackrel{\scriptscriptstyle{ ext{def}}}{=} \{w_3, w_5, w_6\}$

Let $\mathbf{B} \triangleq \{B(p_1), B(p_2), B(p_3), B(p_4)\}$. **B** is a witnessing₂ set, since, in every w_i , *exactly half* of the beliefs in **B** are accurate. So, by $(\mathcal{R}) \Rightarrow (NW_2S)$, **B** *violates* (\mathcal{R}) . But, **B** *satisfies* (NDB), since every belief set on \mathcal{A} has an expected distance from vindication of 2, relative to the uniform Pr-distribution, which implies that no belief set on \mathcal{A} dominates any other belief set on \mathcal{A} . Finally, **B** satisfies (NCP), since every pair of beliefs in **B** is consistent. \Box

							_
Easwaran & Fitelson	Accuracy, Cohere	nce and Evidence	22	Easwaran & Fitelson	Accuracy, Cohe	rence and Evidence	23
Stage-Setting o	Coherence Requirements for Belief	Extras ○○○○○○○○○●○○○○○○○	Refs	Stage-Setting o	Coherence Requirements for Belief	Extras ○○○○○○○○●○○○○○○	Refs
Theorem				Parar	netric Family of Requirem	ents Between (\mathcal{R}) and (CB)	
$(NW_2S) \Rightarrow$	(<i>R</i>).			(\mathcal{R}_{γ})	There is a probability function (i) B contains $B(n)$ iff $Pr(n) > 2$	Pr such that, for all $p \in \mathcal{A}$:	
Proof.					(ii) B contains $D(p)$ iff $Pr(p) <$	1-r,	
Let there	be twelve possible worlds, <i>u</i>	w_1, \ldots, w_{12} . And, let		, v	where $r \in [1/2, 1)$.		
$\mathcal{A} ext{ def } \{p_1,$	\ldots, p_6 , where the p_i are defined as	fined as follows. ^{<i>a</i>}		● Let ₿	$_n$ denote the class of minim	nal inconsistent belief sets	
$p_1 \stackrel{\scriptscriptstyle{ ext{def}}}{=}$	$\{w_1, w_2, w_3, w_4, w_8\}$	$w_2 \stackrel{\text{\tiny def}}{=} \{w_1, w_2, w_5, w_6, w_9\}$		of siz	the n — each member of \mathbb{B}_n f size n containing no income	is an inconsistent judgmen nsistent proper subset.	t
$p_3 \stackrel{\scriptscriptstyle{\mathrm{def}}}{=}$	$\{w_1, w_3, w_5, w_7, w_{10}\}$	$p_4 \stackrel{\text{\tiny def}}{=} \{w_1, w_4, w_6, w_7, w_1\}$	1}	● Let B	n be a member of \mathbb{B}_n , <i>i.e.</i> , B	B_n consists of n	
$p_5 \stackrel{\scriptscriptstyle{ ext{def}}}{=}$	$\{w_2, w_3, w_4, w_5, w_6, w_7, w_{12}\}$	2}		prop	ositions, there is no world i	n which all of these <i>n</i>	
$p_6 \stackrel{\scriptscriptstyle{\mathrm{def}}}{=}$	$\{w_8, w_9, w_{10}, w_{11}, w_{12}\}$			prope there	ositions are true, but for ea is a world in which all mer	ch proper subset $\mathbf{B} \subset \mathbf{B}_n$ nbers of B are true.	
Let $\mathbf{B} \triangleq \{l\}$	$B(p_1), B(p_2), B(p_3), B(p_4), B(p_$	$(p_5), B(p_6)$. It can be		Theorem			
shown the	at (a) B contains no witnessi	$ng_2 \text{ set } (\mathbf{B} \text{ satisfies } NW_2S),$		To a lloo	$2 : (\dots, n-1) : (n-1) $		
but (b) B	has no probabilistic represer	itation (B violates R).		For all n 2	≥ 2 , If $r \geq \frac{n}{n}$ then (\mathcal{R}_r) risks out	ties out each member of \mathbb{B}_n ,	
^{<i>a</i>} This co	unterexample was discovered by J	ohannes Marti (ILLC).		write if r	$< \frac{1}{n}$, then (\mathcal{K}_{γ}) rules out		

Easwaran & Fitelson

24

Refs

• Kenny has written a paper [11] that explains how to relax the assumption of Opinionation in our framework.

- Our approach is equivalent to assigning (in)accurate judgments a *score* of (-1) + 1, and calculating the *total score* of **B** (at w) as the *sum* of the scores of all $p \in A$.
- Kenny's Generalizations: (a) allow scores of -w and +r, where $w \ge r > 0$, and (b) allow *S* to *suspend on p* [*S*(*p*)], where all suspensions are given a *neutral* score of *zero*.
- This generalization of our framework leads to an elegant analogue of our central Theorem that (*R*) entails (WADA).

Theorem. An agent *S* will avoid (strict) dominance in *total score if* their belief set **B** can be represented as follows:

(A) There exists a probability function $Pr(\cdot)$ such that, $\forall p \in \mathcal{A}$:

$$B(p) \text{ iff } \Pr(p) > \frac{w}{r+w},$$

$$D(p) \text{ iff } \Pr(p) < 1 - \frac{w}{r+w},$$

$$S(p) \text{ iff } \Pr(p) \in \left[1 - \frac{w}{r+w}, \frac{w}{r+w}\right]$$

Easwaran & Fitelson

26

Accuracy, Coherence and Evidence

Simplest case of dF's Theorem [8]. The diagonal lines are the *probabilistic b*'s (on ⟨*P*, ¬*P*⟩). The point ⟨1, 0⟩ (⟨0, 1⟩) corresponds to the world in which *P* is true (false).

Theorem (de Finetti [8]). *b* is *non*-probabilistic $\Leftrightarrow \exists b'(\cdot)$ which is (Euclidean) *closer to* $v_w(\cdot)$ *in every possible world*.

• The plot on the left (right) explains the \Rightarrow (\Leftarrow) direction.

Proof.

Let $\mathbf{B}_n \triangleq \phi_1, \dots, \phi_n$. Let each w_i be a world in which ϕ_i is false, but all other members of \mathbf{B}_n are true. Let Pr be the probability function that assigns 1/n to each world w_i and 0 to all other worlds. If r < n-1/n, then Pr shows \mathbf{B}_n satisfies (\mathcal{R}_r). This establishes the second half of the Theorem.

For the first half of the Theorem, we proceed *via reductio*. Suppose (for *reductio*) \mathbf{B}_n is a member of \mathbb{B}_n that is *not* ruled out by $(\mathcal{R}_{n-1/n})$. Then there must be some Pr such that for each *i*, $\Pr(\phi_i) > n-1/n$. Therefore, for each *i*, $\Pr(\neg \phi_i) < 1/n$. Now, since the disjunction of finitely many propositions is at most as probable as the sum of their individual probabilities, we must have $\Pr(\neg \phi_1 \lor \ldots \lor \neg \phi_n) < 1$. But, since \mathbf{B}_n is inconsistent, $\neg \phi_1 \lor \ldots \lor \neg \phi_n$ is a tautology, and must have probability 1. Contradiction. So \mathbf{B}_n must be ruled out by $(\mathcal{R}_{n-1/n})$.

Accuracy, Coherence and Evidence

Extras

tting Coherence Requirements for Belief

- We (along with Rachael Briggs and Fabrizio Cariani) [2] are investigating various applications of this new approach.
- One interesting application is to judgment aggregation. E.g.,
 - Majority rule aggregations of the judgments of a bunch of agents each of whom satisfy (PV) *need not* satisfy (PV).
- **Q**: does majority rule preserve *our* notion of coherence, *viz.*, is (WADA) preserved by MR? **A**: yes (on simple, atomic + truth-functional agendas), but *not on all possible agendas*.
 - There are (not merely atomic + truth-functional) agendas *A* and sets of judges $J(|A| \ge 5, |J| \ge 5)$ that (severally) satisfy (WADA), while their majority profile *violates* (WADA).
- *But*, if a set of judges is (severally) *consistent* [*i.e.*, satisfy (PV)], then their majority profile *must* satisfy (WADA).
- **Recipe**. Wherever **B**-*consistency* runs into paradox, substitute *coherence* (in *our* sense), and see what happens.

28

 In the first part of the book, I will present an argument for the key claim that "probabilistic and probabilistic Admissibility (PA). A credal inaccuracy for the key claim that "probabilistic credence". That is: (PrE) In each epistemic context (determined by a body of total evidence <i>E</i>, there is a (sharp, numerical) function s(<i>p</i>, <i>E</i>) witch measures <i>the degree to which E supports</i> p (for each <i>p</i> in <i>A</i>), where s(·, <i>E</i>) is a <i>probabilistic function</i> p(·). The argument in Part I of the book is a variant of Joyce's [20] argument that <i>credences</i> ought to be <i>probabilistic</i>. This argument trades (only) on three assumptions regarding measures <i>the degrational inaccuracy</i> of a credence function <i>b</i> at a possible world <i>w</i>. In general, measures of credal inaccuracy are measures of "distance" between a credence function <i>b</i> and the <i>indicator function v_w</i> at <i>w</i> (which determines the <i>alethic ideal</i> at <i>w</i>). These measures are assumed to be <i>continuous</i>, <i>truth-directed</i>, <i>and probabilistically admissible</i>. Leaver & Erleton Accuracy. Coherence and Evidence 30 Leaver & Erleton Accuracy of Definition (<i>b</i> how is <i>b</i> and the <i>bidence</i> 30 Leaver & Erleton Accuracy. Coherence and Evidence 30 Leaver & Erleton Accuracy of Definition (<i>b</i> how is <i>b</i> and the <i>bidence</i> 30 Leaver & Erleton Accuracy. Coherence and Evidence 30 Leaver & Erleton Accuracy. Coherence and Evidence 30 Leaver & Erleton Accuracy of Definition (<i>b</i> how is <i>bidence</i> 30 Leaver & Erleton Accuracy and Evidence 30 Leaver & Erleton Accuracy and Evidence 30 Leaver & Erleton Accuracy and Evidence 30 Leaver (<i>b c</i> and <i>c</i> and <i>p</i> and <i>bidence</i> 30 Leaver (<i>c</i> and <i>p</i> and <i>bidence</i> 30 Leaver (<i>b c</i> and <i>c</i> and <i>p</i> and <i>bidence</i> 30 Leaver (<i>b c</i> and <i>c</i> and <i>p</i> and <i>bidence</i> 30 Leaver	nplies l). y a ? 1. natter otal listic. ² (EC).
 (PrE) In each epistemic context (determined by a body of total evidence <i>E</i>), there is a (sharp, numerical) function <i>s</i>(<i>p</i>, <i>E</i>) which measures the degree to which <i>E</i> supports <i>p</i> (for each <i>p</i> in <i>A</i>), where <i>s</i>(<i>·</i>, <i>E</i>) is a probability function <i>P</i>(<i>·</i>). The argument in Part I of the book is a variant of Joyce's [20] argument that <i>credences</i> ought to be <i>probabilistic</i>. This argument trades (only) on three assumptions regarding <i>measures 1</i>(<i>b</i>, <i>w</i>) of the gradational inaccuracy of a credence function <i>b</i> at a possible world <i>w</i>. If a general, measures of credal inaccuracy are measures of "distance" between a credence function <i>b</i> and the <i>indicator function v_w</i> at <i>w</i> (which determines the <i>alethic ideal</i> at <i>w</i>). These measures are assumed to be <i>continuous</i>, <i>truth-directed, and probabilistically admissible</i>. Exwarm & Fileson Accuracy, Coherence and Evidence 30 Sugeswitting Coherence Regurements for <i>belief</i> (atrus) (or <i>Benerical Knowledge, Phil. Studies</i>, 1975. I. I. Bonjour, <i>The Coherence Theory of Empirical Knowledge, Phil. Studies</i>, 1975. J. Broome, <i>Wide or Narrow Scope?, Mind</i>, 2007. We arms <i>The world and or barrow Scope?, Mind</i>, 2007. 	l). y a 2 1. natter otal listic. 2 (EC).
which measures the degree to which E supports p (for each p in A), where $s(\cdot, E)$ is a probability function $P(\cdot)$. • The argument in Part I of the book is a variant of Joyce's [20] argument that credences ought to be probabilistic. • This argument that credences ought to be probabilistic. • This argument trades (only) on three assumptions regarding measures $f(b, w)$ of the gradational inaccuracy of a credence function b at a possible world w. • In general, measures of credal inaccuracy are measures of "distance" between a credence function b and the indicator function v_w at w (which determines the alethic ideal at w). • These measures are assumed to be continuous, truth-directed, and probabilistically admissible. Easwaran & Fileson Accuracy, Coherence and Evidence 2000 Coherence, to appear in Essays in Collective Epistemology, J. Lackey (ed), OUP. [3] J. Broome, Wide or Narrow Scope?, Mind, 2007.	l). y a 2 1. natter otal listic. 2 (EC).
 The argument in Part I of the book is a variant of Joyce's [20] argument that <i>credences</i> ought to be <i>probabilistic.</i> This argument trades (only) on three assumptions regarding <i>measures</i> 1(b, w) of the gradational inaccuracy of a credence function b at a possible world w. In general, measures of credal inaccuracy are measures of "distance" between a credence function b and the <i>indicator function</i> v_w at w (which determines the <i>alethic ideal</i> at w). These measures are assumed to be <i>continuous</i>, <i>truth-directed, and probabilistically admissible</i>. Exwaran & Fitebon Stage-Setting Coherence Requirements for Bellef Stage-Setting Coherence Requirements for Bellef Extras Stage-Setting Coherence Theory of Empirical Knowledge, Phil. Studies, 1975. I. B. Briggs, F. Cariani, K. Easwaran, B. Fitelson, <i>Individual Coherence and Group Coherence and Probabilistical Coherence and Scope?</i>, Mind, 2007. J. Broome, Wide or Narrow Scope?, Mind, 2007. 	otal listic.
• This argument trades (only) on three assumptions regarding measures $f(b, w)$ of the gradational inaccuracy of a credence function b at a possible world w. • In general, measures of credal inaccuracy are measures of "distance" between a credence function b and the indicator function v_w at w (which determines the alethic ideal at w). • These measures are assumed to be continuous, truth-directed, and probabilistically admissible. Easwaran & Filelson Accuracy, Coherence and Evidence 30 * Mage-Setting Coherence Requirements for Bellef Second S	natter otal listic. ĉ (EC).
measures $f(b, w)$ of the gradational inaccuracy of a credence function b at a possible world w.what the total evidence E is $-b(\cdot) \neq s(\cdot, E)$.• In general, measures of credal inaccuracy are measures of "distance" between a credence function b and the indicator function v_w at w (which determines the alethic ideal at w).4. \therefore If (1) is true, then $b(\cdot) = s(\cdot, E)$ (for some body of evidence E) only if $b(\cdot) -$ and \therefore $s(\cdot, E) -$ is probabili• These measures are assumed to be continuous, truth-directed, and probabilistically admissible.90• Easwaran & FitelsonAccuracy, Coherence and Evidence• Stage-Setting oCoherence Requirements for Bellef cocococococo• Stage-Setting oCoherence Requirements for Bellef cococococococo• Il L. Bonjour, The Coherence Theory of Empirical Knowledge, Phil. Studies, 1975.81• Il L. Bonjour, The Coherence Theory of Empirical Knowledge, Phil. Studies, 1975.11• Il Strass coherence, to appear in Essays in Collective Epistemology, J. Lackey (ed), OUP.117• Il J. Broome, Wide or Narrow Scope?, Mind, 2007.119• Wide or Narrow Scope?, Mind, 2007.119	otal listic. f (EC).
 In general, measures of credal inaccuracy are measures of "distance" between a credence function b and the <i>indicator function</i> v_w at w (which determines the <i>alethic ideal</i> at w). These measures are assumed to be <i>continuous</i>, <i>truth-directed</i>, <i>and</i> probabilistically admissible. Easwaran & FiteIson Accuracy. Coherence and Evidence 30 Stage-Setting Coherence Requirements for Belief Extras cococococococococococococococococococo	listic. f (EC).
function v_w at w (which determines the alethic ideal at w).• These measures are assumed to be continuous, truth-directed, and probabilistically admissible.3. If $b(\cdot)$ is 2-dominated, then $b(\cdot)$ is evidentially incor 4. \therefore If (1) is true, then $b(\cdot)$ is evidentially (and alethica consistent only if $b(\cdot) - and \therefore s(\cdot, E) - is probabiliEaswaran & FitelsonAccuracy, Coherence and EvidenceStage-SettingoCoherence Requirements for BeliefcocococococoStage-SettingoCoherence Requirements for Beliefcococococococo[1] L. Bonjour, The Coherence Theory of Empirical Knowledge, Phil. Studies, 1975.Refscococococococococococococococococococo$	(LC).
 4. ∴ If (1) is true, then b(·) is evidentially (and alethica consistent only if b(·) – and ∴ s(·, E) – is probabilistically admissible. Easwaran & Fitelson Accuracy, Coherence and Evidence 30 Stage-Setting Coherence Requirements for Belief Extras coordocococococococococococococococococo	sistent.
Easwaran & Fitelson Accuracy, Coherence and Evidence 30 Easwaran & Fitelson Accuracy, Coherence and Evidence Stage-Setting Coherence Requirements for Belief Extras Refs Coherence Requirements for Belief Extras Stage-Setting Coherence Requirements for Belief Stage-Setting Coherence Requirements for Belief Stage-Setting Coherence [15] R. Fumerton, Metaepistemology and Skepticism, Rowman & Littlefield, 1 [17] </td <td>ly) stic.</td>	ly) stic.
Stage-Setting Coherence Requirements for Belief Extras Refs Stage-Setting Coherence Requirements for Belief Extras 0	31
 [1] L. Bonjour, <i>The Coherence Theory of Empirical Knowledge</i>, <i>Phil. Studies</i>, 1975. [2] R. Briggs, F. Cariani, K. Easwaran, B. Fitelson, <i>Individual Coherence and Group Coherence</i>, to appear in <i>Essays in Collective Epistemology</i>, J. Lackey (ed.), OUP. [3] J. Broome, <i>Wide or Narrow Scope?</i>, <i>Mind</i>, 2007. [15] R. Foley, <i>Working Without a Net</i>, Oxford University Press, 1992. [16] R. Fumerton, <i>Metaepistemology and Skepticism</i>, Rowman & Littlefield, 1 [17] A. Hájek, <i>A Puzzle About Degree of Belief</i>, manuscript. [18], <i>Arguments for — or Against — Probabilism?</i>, BJPS, 2008. [19] W. James, <i>The will to believe, The New World</i>, 1896. 	Refs
 L. Bonjour, <i>The Coherence Theory of Empirical Knowledge, Phil. Studies</i>, 1975. R. Briggs, F. Cariani, K. Easwaran, B. Fitelson, <i>Individual Coherence and Group Coherence</i>, to appear in <i>Essays in Collective Epistemology</i>, J. Lackey (ed.), OUP. J. Broome, <i>Wide or Narrow Scope?</i>, <i>Mind</i>, 2007. I. Broome, <i>Wide or Narrow Scope?</i>, <i>Mind</i>, 2007. 	
 [2] R. Briggs, F. Cariani, K. Easwaran, B. Fitelson, <i>Individual Coherence and Group</i> <i>Coherence</i>, to appear in <i>Essays in Collective Epistemology</i>, J. Lackey (ed.), OUP. [3] J. Broome, <i>Wide or Narrow Scope</i>?, <i>Mind</i>, 2007. [17] A. Hájek, A Puzzle About Degree of Belief, manuscript. [18], Arguments for - or Against - Probabilism?, BJPS, 2008. [19] W. James, The will to believe, The New World, 1896. 	95.
[3] J. Broome, <i>Wide or Narrow Scope?</i> , <i>Mind</i> , 2007. [19] W. James, <i>The will to believe</i> , <i>The New World</i> , 1896.	
[4] M. Caie, Rational Probabilistic Incoherence, The Philosophical Review, 2013. [20] J. Joyce, Accuracy and Coherence: Prospects for an Alethic Epistemology	of
[5] R. Carnap, Logical Foundations of Probability, U. of Chicago, 2nd ed., 1962.	JU9.
[6] D. Christensen, Putting Logic in its Place, OUP, 2007.	2003. 2003
[7] W. Clifford, The ethics of belief, Contemporary Review, 1877. [23] M. Kaplan, Coming to Terms with our Human Fallibility, PPR, 2013.	c, 1000.
[8] B. de Finetti, <i>The Theory of Probability</i> , Wiley, 1974. [24] P. Klein, <i>The virtues of inconsistency</i> , <i>The Monist</i> , 1985.	
[9] M. Deza and E. Deza, Encyclopedia of Distances, Springer, 2009. [25] N. Kolodny, How Does Coherence Matter?, Proc. of the Aristotelian Socie	<i>y</i> , 2007.
 [10] C. Duddy and A. Piggins, A measure of distance between judgment sets, Social Choice and Welfare, 2012. [26] N. Kolodny and J. MacFarlane, Ifs and oughts, Journal of Philosophy, 20 [27] D. Millon, Out of arrays Euther assays on aritical rationalism. Ashrato, 20 	<i></i>
 [11] K. Easwaran, Dr. Truthlove or: How I Learned to Stop Worrying and Love Bayesian Probability, manuscript. [27] D. Niller, Out of error. Further essays on Critical Fationality, Asingate, 2 [28] D. Nelkin, The lottery paradox, knowledge, and rationality, Phil. Review, 	0.
[12] K. Easwaran and B. Fitelson, Accuracy, Coherence, and Evidence, to appear in Oxford Studies in Epistemology V, T. Szabo-Gendler and J. Hawthorne (eds.), OUP.[29] J. Pollock, Nomic probability and the foundations of induction, OUP, 199[30] F. Ramsey, Truth and Probability, 1928.	0.)06. 2000.
[13] B. Fitelson, <i>Coherence</i> , book manuscript, 2014. [31] S. Ryan, <i>The epistemic virtues of consistency</i> , <i>Synthese</i> , 1996.	0.)06. 2000.).
 [14] B. Fitelson and D. McCarthy, <i>Toward an Epistemic Foundation for Comparative Confidence</i>, manuscript, 2014. [32] M. Titelbaum, <i>Quitting Certainties</i>, OUP, 2013. [33] T. Williamson, <i>Knowledge and its Limits</i>, Oxford University Press, 2000. 	0.)06. 2000.).
Easwaran & Fitelson Accuracy, Coherence and Evidence 32 Easwaran & Fitelson Accuracy, Coherence and Evidence	0.)06. 2000.).