Let’s use “+1” to denote best epistemic status, “−1” to denote worst epistemic status, and “0” to denote middling epistemic status. Our simplest, 2-valued scheme is:

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>Pennes</th>
<th>Q pne</th>
<th>Qqens</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>T</td>
<td>T</td>
<td>−1</td>
<td>−1</td>
<td>+1</td>
</tr>
<tr>
<td>P₂</td>
<td>T</td>
<td>F</td>
<td>+1</td>
<td>−1</td>
<td>−1</td>
</tr>
<tr>
<td>P₃</td>
<td>F</td>
<td>T</td>
<td>−1</td>
<td>+1</td>
<td>−1</td>
</tr>
<tr>
<td>P₄</td>
<td>F</td>
<td>F</td>
<td>−1</td>
<td>−1</td>
<td>+1</td>
</tr>
</tbody>
</table>

If we’re going to use only 2-values (“correct/incorrect”), then it seems to me that this scheme is forced on us, by (†).

But, one might think that a 3-valued scheme makes more sense. David Christensen makes the following observation.

Suppose I’m going to flip a coin. Can I rationally be indifferent between heads (H) and tails (T)? It seems that H ≃ₜ T would be dominated by H >ₜ T (or T >ₜ H), since H ≃ₜ T is guaranteed to be “incorrect” and the latter aren’t.

Christensen is right. And, he suggests a 3-valued scheme.
Theorem. No 2 or 3-valued scoring scheme is such that:

1. \(S \) entails (at least some instances of) both transitivity and additivity as (weak) dominance norms.

and, the following eight (8) scoring desiderata are met:

1. Having a subset of judgments \(\{ p \succ_S q, p \succ_S r, q \sim_S r \} \) should not — in and of itself — ensure “incoherence”.
2. Ditto for subsets of the form \(\{ p \succ_S q, p \succ_S r, q \succ_S r \} \).
3. \(p \succ_S q \) should get a “worst” score when \(p \) is F and \(q \) is T.
4. \(p \succ_S q \) should get the same score when \(p \) and \(q \) are both T as it does when \(p \) and \(q \) are both F.
5. \(p \sim_S q \) should get the same score when \(p \) and \(q \) are both T as it does when \(p \) and \(q \) are both F.
6. \(p \sim_S q \) should get the same score when \(p \) and \(q \) are both T as it does when \(p \) is F and \(q \) is T.
7. The score of \(p \succ_S q \) when \(p \) is T and \(q \) is F should not be strictly worse than the score of \(p \succ_S q \) when \(p, q \) are both T.
8. The score of \(p \succ_S q \) when \(p \) is T and \(q \) is F should be strictly better than the score of \(p \succ_S q \) when \(p \) is F and \(q \) is T.

Extra. Let’s suppose (arguendo) that \(S \) has a numerical credence function \(b : B \rightarrow \mathbb{R} \) (these \(b \)'s are opinionated, of course, and so we’re ignoring suspension of judgment here, once again).

- As usual, we need to settle on a way of scoring \(b \)'s for inaccuracy at each possible world \(w \) — call this \(I(b, w) \).
- For simplicity, I’ll assume \(I(b, w) \) is an additive function, which sums-up the inaccuracies of \(b \), for each \(p \in B \) at \(w \).
- If we associate the number 1 with T and the number 0 with F (at each world \(w \)), then the inaccuracy of \(b(p) \) at world \(w \) will be \(b \)'s “distance (\(d \)) from the 0/1-truth-value of \(p \)” at \(w \).

Example. Suppose \(S \) has just two (contingent) propositions \(\{ P, \sim P \} \) in their doxastic space. Then, there are two salient possible worlds (\(w_1 \) in which \(P \) is T, and \(w_2 \) in which \(P \) is F).

- \(I(b, w_1) = d(b(P), 1) + d(b(\sim P), 0) \).
- \(I(b, w_2) = d(b(P), 0) + d(b(\sim P), 1) \).

Theorem. No 2 or 3-valued scoring scheme is such that:

1. \(S \) entails (at least some instances of) both transitivity and additivity as (weak) dominance norms.

and, the following eight (8) scoring desiderata are met:

1. Having a subset of judgments \(\{ p \succ_S q, p \succ_S r, q \sim_S r \} \) should not — in and of itself — ensure “incoherence”.
2. Ditto for subsets of the form \(\{ p \succ_S q, p \succ_S r, q \succ_S r \} \).
3. \(p \succ_S q \) should get a “worst” score when \(p \) is F and \(q \) is T.
4. \(p \succ_S q \) should get the same score when \(p \) and \(q \) are both T as it does when \(p \) and \(q \) are both F.
5. \(p \sim_S q \) should get the same score when \(p \) and \(q \) are both T as it does when \(p \) and \(q \) are both F.
6. \(p \sim_S q \) should get the same score when \(p \) and \(q \) are both T as it does when \(p \) is F and \(q \) is T.
7. The score of \(p \succ_S q \) when \(p \) is T and \(q \) is F should not be strictly worse than the score of \(p \succ_S q \) when \(p, q \) are both T.
8. The score of \(p \succ_S q \) when \(p \) is T and \(q \) is F should be strictly better than the score of \(p \succ_S q \) when \(p \) is F and \(q \) is T.

Extra. Let’s suppose (arguendo) that \(S \) has a numerical credence function \(b : B \rightarrow \mathbb{R} \) (these \(b \)'s are opinionated, of course, and so we’re ignoring suspension of judgment here, once again).

- As usual, we need to settle on a way of scoring \(b \)'s for inaccuracy at each possible world \(w \) — call this \(I(b, w) \).
- For simplicity, I’ll assume \(I(b, w) \) is an additive function, which sums-up the inaccuracies of \(b \), for each \(p \in B \) at \(w \).
- If we associate the number 1 with T and the number 0 with F (at each world \(w \)), then the inaccuracy of \(b(p) \) at world \(w \) will be \(b \)'s “distance (\(d \)) from the 0/1-truth-value of \(p \)” at \(w \).

Example. Suppose \(S \) has just two (contingent) propositions \(\{ P, \sim P \} \) in their doxastic space. Then, there are two salient possible worlds (\(w_1 \) in which \(P \) is T, and \(w_2 \) in which \(P \) is F).

- \(I(b, w_1) = d(b(P), 1) + d(b(\sim P), 0) \).
- \(I(b, w_2) = d(b(P), 0) + d(b(\sim P), 1) \).
• **Theorem** (de Finetti). \(b \) is non-probabilistic if and only if there exists a probabilistic credence function \(b' \) such that (a) \(b' \) has a strictly lower Brier Score than \(b \) at some worlds, and (b) \(b' \) never has a greater Brier Score than \(b \) at any world.

• And, the proof of de Finetti’s theorem is constructive — it tells us precisely which functions \(b' \) “Brier-dominate” \(b \).

Joyce [6, 5] uses de Finetti’s Theorem (and generalizations of it) to ground an (epistemic) probabilistic coherence norm. (PC) \(S \)'s credences \(b \) should be probabilistic — on pain of being Brier-dominated by (specific) credence functions \(b' \).

Because Joyce thinks that Brier Score is a good measure of “credal inaccuracy”, he thinks this provides incoherent agents with some “epistemic reason” to be Pr-coherent.

Maher [10] points out that other prima facie plausible measures of “inaccuracy” do not undergird (PC). I’ll return to that issue below. But, first, a concrete toy example.

Suppose \(S \) adopts the Brier Score as their \(I \)-measure, and that \(S \)'s \(b \) is non-probabilistic. Then, there are alternative (coherent) credence functions \(b' \) that accuracy-dominate \(b \).

Intuitively, these \(b' \) functions should “look epistemically better” (in a precise sense) than \(S \)'s current credences \(b \).

But, our “evidentialist” (“Kolodny’s revenge”) worry lingers.

Consider a very simple toy agent \(S \) with one sentence \(P \) in their language. And, suppose \(S \)'s credence function assigns \(b(P) = 0.2 \) and \(b(\neg P) = 0.7 \). So, \(S \)'s \(b \) is non-probabilistic.

It follows from de Finetti/Joyce’s theorems that there is a specific set of credence functions \(b' \) that Brier-dominate \(b \).

The figure on the next slide depicts this situation. The red dot is \(S \)'s credence function \(b \). And, the shaded region depicts the credence functions \(b' \) that Brier-dominate \(b \).

[The black dot at \((0.2, 0.8) \) depicts the only probabilistic credence function that is compatible with \(b(P) = 0.2 \).]

I don’t have the space to delve into the various other worries I have about Joyce’s argument(s) for probabilism. [But, in my lecture next week, I will discuss another worry.]

For now, I have a suggestion re the quantitative case.

Based on our experience from the qualitative and comparative cases, we should not expect an AD-justification of the full probabilistic norm(s) in the quantitative case...

Rather than trying to “justify” the use of \(s \) (or some other “distance measure” that yields the full probabilistic norms), why not start with desiderata for distance measures \(d \)? E.g.,

\[
\begin{align*}
&d(x, x) = 0, \\
&d(x, y) = d(y, x), \\
&d(x, y) \leq d(x, z) + d(z, y).
\end{align*}
\]

Once we settle on desiderata \(D \) for adequate measures of distance (in this context), then we could ask the following: (Q) What accuracy-dominance norms are entailed by \(D \)?

In other words, (Q) is asking what accuracy-dominance norms are agreed upon by all inaccuracy measures \(I_d(b, w) \), where all we assume about \(d \) is that it satisfies desiderata \(D \).

I don’t have an answer to (Q). But, I conjecture that this will lead to norms for \(b \) that are similar to those we saw in the comparative case — e.g., if \(p = q \), then \(b(p) \leq b(q) \), etc.

Idea: start with \(s(x, y) \) and Maher's \(S(x, y) = |x - y| \).
References

- If S violates **Monotonicity** (4), then S is accuracy-dominated.

 (4) If p entails q, then $p \succ_S q$.

<table>
<thead>
<tr>
<th>w_1</th>
<th>T</th>
<th>$Q \succ_S P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_2</td>
<td>T</td>
<td>B</td>
</tr>
<tr>
<td>w_3</td>
<td>F</td>
<td>C</td>
</tr>
<tr>
<td>w_4</td>
<td>F</td>
<td>B</td>
</tr>
</tbody>
</table>

- Indeed, as this table shows, any scoring scheme that satisfies our desiderata [viz., $(\dagger) \Rightarrow A < C$] entails Monotonicity.

- To see that de Finetti’s additivity axiom (3) does not have a dominance justification, one must look at all the possible ways of “fixing” a violation of (3), and show that none of these lead to a comparison set that dominates the original.

- There aren’t that many cases to check. [I won’t show them.]

- On the next slides, I’ll discuss the Scott Axiom...

Definition

For each state description s and each sequence $(n$-tuple) of propositions $Z = \{z_1, \ldots, z_n\} \in \prod_n B$, let $c(s, Z)$ be the number of elements of Z that are entailed by s.

OK, here’s the (dreaded) Scott Axiom:

(SA) Let $X, Y \in \prod_n B$ be (arbitrary) sequences of propositions, each having length $n > 0$. Let (x_1, \ldots, x_n) denote the members of X, and (y_1, \ldots, y_n) denote the members of Y.

If the following two conditions are satisfied

i. For every state description s, $c(s, X) = c(s, Y)$.

ii. For all $i \in (1, n)$, $x_i \succ_S y_i$.

then, the following must also be the case

iii. $y_1 \succ_S x_1$.

- Not only is (SA) *unintuitive*, it is also *quite strong*. It entails both de Finetti’s “additivity” (3) and (full) transitivity of \succ_S.

Theorem (Fishburn)

(SA) is true if and only if there exists a mass function m on B such that, for all propositions p and q in B, the following real-valued representation holds:

\[
(*) \quad p \succ_S q \text{ if and only if } \sum_{s \models p} m(s) > \sum_{s \models q} m(s).
\]

And, given de Finetti’s axiom (2), there will always be a probability mass function m satisfying $(*)$.

Fishburn’s Theorem reveals that (SA) alone ensures a real-valued representation ($R\succ_S$) of the \succ_S-ordering.

Not only does this imply de Finetti’s additivity axiom (3), but it also implies axiom (1) as well (\succ_R is a strict total order).

Thus, once we have (SA) on board, the only axiom of de Finetti that can do any work is his axiom (2), which just ensures that $R\succ_S$ is a probabilistic representation of \succ_S.