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ABSTRACT 

The investigation of the visibility of Earth-bound satellites using three Deep Space 
Network (DSN) stations is performed in four steps, which progress from a very 
simplistic two-dimensional model to a general three-dimensional paradigm. These 
steps are as follows: 

1. Two-dimensional case with line of sight (LOS) being simply the local horizontal, 
the satellite confined to the equatorial plane, and the three stations spaced 
equiangularly around the equator. 

2. Two-dimensional case with an elevation angle, e,, constraint added to the LOS. 
The stations and the satellite are still equatorial in this case; however, the LOS 
is elevated e, above the local horizontal at all three stations. This constraint 
arises due to the degradation of electromagnetic radiation caused by 
atmospheric effects. 

3. Three-dimensional model with DSN stations at Canberra, Goldstone, and 
Madrid used as observation points. 'The satellite is confined to the equatorial 
plane. A spherical coordinate system is used with the center of Earth as the 
origin, the North Pole as the z-axis, and the Greenwich Meridian as the x-axis. 
An analytical solution is not found in this case. Instead, computer-aided vector 
analysis is used to calculate the zenith angle at the three DSN stations for small 
increments of the orbital path (using a e, = 10-degree constraint on the LOS). 
Thus, numerical approximations for the visibility ratios of orbits with various 
values of Ro can be found. 

4. Because equatorial orbits are not of particular interest here, a more general 
three-dimensional model is necessary to calculate visibilities of orbits inclined 
with respect to the equatorial plane. For this reason, linear transformations are 
performed to rotate the orbital vector about the x-axis (inclination) and about the 
z-axis (right ascension of ascending nodes). The inclination used is 
28.6 degrees because the orbits of interest are those that lie in the plane of the 
Moon's orbit. However, DSN.FOR will calculate the visibility of any Earth-bound 
satellite with a given altitude (R,), inclination angle (y), and right ascension (p). 
(Visibility data for a satellite in the Moon's orbital plane at various values of 5 
and p are graphically depicted.) 



VISIBILITY OF EAFITH-BOUND SATELLITES: A DEEP SPACE NETWORK STUDY 

1.0 TWO-DIMENSIONAL VISIBILITY MODEL 

A simple two-dimensional mathematical model can be used to simulate the visibility of 
an Earth-bound satellite from three ground stations. The geometry of the two- 
dimensional model shown in Figure 1 allows the derivation of *the ratio of a given orbit 
that can be seen by the three ground-based stations for any given Ro. The circle 
represents a cross-section of Earth at the equator; the points on the circle represent 
three ground-based "stations." For simplicity, these points have been placed on the 
equator and spaced at equiangular intervals around the equator. The dotted circle 
represents an equatorial satellite (of altitude Ro). The derivation is as follows (see 
Figure 1 for explanation of variables): 

Due to symmetry, the total angle intercepted by all three stations can be written as 
three times this angle, specifically: 

_-... This angle, when compared to the total angle (2x radians) gives the visibility ratio of 
that orbit from the three ground-based stations. 

60 6 Ratio = ~ j i  - 2, R 
--COS-1 (R ) 

e + Ro 

Thus, the visibility can be written as follows: 

3 Ratio =, cos-1 
R 

(Re t ~ o )  

This visibility is an ideal case in which all stations lie in the plane of the orbit (i.e., the 
equatorial plane) and in which the observers on the surface have the ability to see 
straight along the horizon. (Lines of visibility are assumed to be tangent to the surface 
at the point of the station.) 

The next step in the two-dimensional paradigm is to eliminate the last assumption and 
invoke an elevation angle constraint, e,, on the line of sight (LOS) for efficient visibility 
of extraterrestrial objects. The LOS elevation angle constraint arises because of the 
absorption of electromagnetic radiation by the atmosphere (Figure 2). Now the 
visibility of a given orbit is less than the ideal two-dimensional case because of the 
minimum elevation aqgle on the LOS. The derivation becomes more involved and the 

- geometry more complex. Appendix A contains a derivation of the visibility of an 
equatorial satellite from three equiangularly spaced equatorial stations with a 



orbit 

\ 

&= Mean radius of the Earth (6378 krn) 
R,= Altitude of orbit (variable) (km) 

(Re + R,) = Radius of orbit (dashed lines) (krn) 
20 = Angle intercepted by local horizontal (out of total orbit) 

Figure 1. Simple Two-Dimensional Model 
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Re = Mean radius of the Earth (6378 km) 
R, = Altitude of orbit (variable) 

(R,+R,) = Radius of orbit (dashed l i es )  (lcm) 
29 = Angle intercepted by (ee = minimum LOS elevation angle) LOS [out of total orbit) 

x, is derived in Appendix A 

Figure 2 Two-Dimensional Model with 0. Elevation Angle 
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/ -  
10-degree constraint on the LOSS of the observers; the final expression is given in 
Equation 5. Appendix A also contains a graphical comparison of the two two- 
dimensional models discussed previously. 

Ratio' = (5) 

Note that the visibility ratios can exceed unity (i.e., can be greater than 1 OO-percent 
visibility) due to overlap in the visibilities of the observers. A ratio (or ratio') of greater 
than 1 simply means that more than one of the three observers can see the satellite at 
the same time. 

2.0 O N :  THF DEEP SPACF NFTWORY 
PROBLEM 

On completion of the two-dimensional analysis, the next step is to take the analysis 
into three dimensions. At this juncture, one must define a coordinate system in which it 
is possible to describe (in three dimensions) vectors that will represent the position of 
the spacecraft and the stations with reference to some fixed point in three-dimensional 
space. - 
The spherical coordinate system chosen is illustrated in Figure 3. The center of Earth 
is the origin of this coordinate system. 'The z-axis represents the North Pole, and the x- 
axis represents the Greenwich Meridian, or the line of 0 degrees longitude. The angle 
e represents the angle between any vector and the positive x-axis (i.e., the longitude of 
any point on Earth). The angle g represents the angle between any vector and the 
positive z-axis (i.e., the difference between 90 degrees and the latitude of any point on 
Earth). For example, a point that lies at 30 degrees east longitude and 50 degrees 
north latitude can be represented by a vector whose length is the radius of Earth, 
whose e angle is 30 degrees, and whose g angle is (90-50) or 40 degrees. Thus, any 
point in space can be described by a vector whose coordinates are r, e, and $. The 
relationship between (r, el $) and (x, y, z) is as follows: 

With these relationships defined, one can represent any point in space as a vector, P, 
whose components are 2, ji', and 2. 

Using this coordinate system, vectors describing the position of the Goldstone, 
Canberra, and Madrid Deep Space Network (DSN) stations are defined as Qg, PC, and 
Q,, respectively. (Figure 3 gives the definition of these vectors, as well as QO1, which 
is the vector describing the position of an equatorial satellite.) 



z 
(North Pole) 

X 
(Greenwich 
Meridian) klQuu& 

All vectors in the form (p. 9. 8)' 
A 

Vol = Equatorial orbit (satellite) vector = ((Re+ b). 90'. 8') 
A 

vg = Goldstone (DSN) vector = (Re.54.7'. 243.1') 
A 

V, = Canberra (DSN) vector = (Re. 125.4'. 149')' 
A 

Vm = Madrid (DSN) vector = (Re. 49.5'. 355.80)' 

0 = Longitude angle 

@ = Complement of latitude angle 

Re = Mean radius of Earth (6378 km) 

R, = Altitude of orbit (km) 

Figure 3. Three-Dimensional Coordinate System 



It is difficult to attempt an analytic solution of the three-dimensional visibility problem. 
Instead, an iterative vector analysis technique can be used to arrive at numerical 
approximations of the visibility of such a satellite in a three-dimensional space model. 
This technique involves iterating the angle e for the equatorial satellite and performing 
simple vector analysis to derive the values of the zenith angles [Z(c,g,m) in Figure 41 
for each DSN station. 

This analysis is done for every value of e around the path of the satellite. If any 
one of the zenith angles is less than a critical value' (which depends on the 
elevation angle constraint), the satellite is said to be "visible" to at least one DSN 
station. Counting the number of times the satellite is visible during one full orbit 
(i.e., 2x radians swept out by vOr) and then comparing that number to the total 
number of iterations produces a resulting ratio that is a numerical approximation 
for the visibility of the satellite for that particular value of Ro. This procedure is 
described in.the following paragraphs and is coded in the FORTRAN program 
called DSN.FOR (see Appendix B). Figure 4 shows the vectors and angles 
referred to below, except for Q2 (c,g,m), which are defined in Equations 7, 8, 
and 9. 

The zenith angle at Canberra is given by 

Zc = cos-1 [ l , ~ l * l ~ , ) w h e r e  vZc =. - & (see Figure 4) 

'The zenith angle at Goldstone is given by 

The zenith angle at Madrid is given by 

If any one of these angles is less than 80 degrees (90-minus-10-degree elevation 
angle) then the satellite is "seen." 

I 

The orbits of interest here are not the equatorial orbits, but rather the orbits that lie in 
the Moon's orbital plane. Linear transformations are performed on the satellite vector 
to rotate the orbit to its proper inclination (28.6 degrees above the equatorial plane). 
This procedure is explained in-the following paragraphs and is also coded in 
DSN.FOR. 



z 
(North Pole) 

X 

(Greenwich 
Meridian) 

To = Transformed orbit (Equations 10 through 13) 

fol = Equatorial orbit (see Figure 3 for coordinates) 

7 = Angle of inclination with respect to equatorial plane 
(28.6' +Moon's orbital plane) 

p = Right Ascension of ascending node 

- - -  = Transformed orbit 

= Equatorial orbit 
a 

V2 (c. g, m) = Vector 0 s )  between DSNs and Satellite 

f(c. g. m) = DSN Vector (Canberra, Goldstone. or Madrid) 

Z = Zenith angle at DSN Station (equations. 7-9) 

Figure 4. Orbii Rotation 



The vector Vol is simply the equatorial satellite vector. To transform this three- 
dimensional space vector into a vector that makes an angle y with the equatorial plane 
(28.6 degrees in this study), multiply the vector by a matrix of transformation that will 
rotate any vector Qo about the x-axis by an angle 7. In addition to this rotation, a rotation 
about the z-axis is also needed to rotate the orbit around the North Pole. This angle is 
called the right ascension of the ascending node of the orbit and is labeled p. Therefore, 
two matrix multiplications must be performed. The total transformation can be written as 

Where [RA,[Rx] are the following 3x3 matrices, ([RZ] rotatesVol by an angle p about the 
z-axis; [Rx] rotates Vol by an angle y about the x-axis): ,() 

cos(p) -sin(p) 0 
sin(p) cos(p) 0 p (1 1) 

0 0 1 ./ 

and 

1 0  

P x I =  [ 0 cos(y) -sin(y) 

O I (1 2) 
0 sin(y) cos(y) 

The transformed vector [Vo] is given by 

Vo is the transformed vector, which is used to calculate the zenith angles (see 
Equations 7 through 9 and program DSN.FOR in Appendix 8). Note that if y is set to 
zero, then the orbit reduces to an equatorial orbit; if the stations are positioned 
equiangularly around the equator, then the resulting data generated by DSN.FOR 
approaches the data for the analytically solved two-dimensional model. QoIx, Polv, 
and QOlz are the x, y, z components of the equatorial orbit satellite (QOlz = 0) 
(see Figure 4). 

3.0 DATA AND CONCLUSIONS 

Table 1 shows various visibilities for various values of R, and p. The value of y 
(inclination angle) is fixed at 28.6 degrees, the Moon's orbital plane. Values of Ro 
range from 0 to 50,000 kilometers. Geosynchronous orbit is at an altitude of about 
35,800 kilometers. In the Moon's orbital plane, once geosynchronous orbit is reached, 

,-- visibilities are well above 80 percent, indicating favorable visibility conditions. 
Visibility steadily increases as altitude increases, approaching 100 percent at a 
distance of nearly 300 megameters. 





- The right ascension of ascending nodes has a pronounced effect on the visibility of a 
satellite in orbit around Earth in the Moon's orbital plane. As p increases, the visibility 
increases to a maximum at about p = 300 degrees. 'This can be explained by the 
presence of two DSN stations located at the equator (Goldstone and Madrid) and 
within 120" W of the prime meridian (243.1' east latitude, 355.8" east latitude, 
respectively). Thus, when the satellite is at 300 degrees "latitude" (p = 300°), it is 
directly "between" two DSN stations. On the other hand, when p = 60 degrees, 
visibility is at a minimum because the third DSN (Canberra) is below the equator at 
about 150" east latitude. Because the other two stations are occulted by Earth, a 
minimum visibility is seen at p = 60 degrees (see Figure 5 and Table 1). 

1. FORTRAN program VISI.FOR written by Dr. Fredric Messing, 1989 

2. Frederic Messing, personal consultations (June J u l y  1990) 



soo-(9)vuors 1 roo 



The following derivation of x is done by setting the formula for the line of visibility (left) 
equal to the formula for the orbit of the satellite (right) yielding the following equation. 
See Figure 2 for details on variables, etc. 

- This is a quadratic equation with two solutions for x  (ee = 1 O0 or dl 8 radians). The 
correct solution is x i  (see Figure 2 for significance). 



-- 
Now ratiol and ratio2 can be calculated; these are the visibility ratios assuming x l  and 
x2 as solutions. See Figure 2 for explanation of variables and formulae. 

3 
ratio1 =, sin-1 (~e:  ~ o )  

4-4.1244[-RO2 - 1 2 7 5 6 ~ ~ 1  + 5.059 x 106 - 2249.2 
ratiol = 0.95493 arcsin Ro + 6378 

f 
4-4.1244[-R02 - 12756~,] + 5.059 x 106 - 2249.2' 

The following graph shows ratiol or the visibility as a function of satellite altitude in the 
elevation angle constraint problem with Oe = 10' (see Figure 2 for significance). 

arcsin 

Ro = 1 1,987 km 
ratiol = 1 

0.48492 

Visibility is 100 percent at Ro = (1 .88)Re, which is 1.88 times as far as the 0 degree 
(local horizontal) two-dimensional model (see comparison). **Note that visibilities can 
exceed unity (i.e., more than 100-percent visibility) because of overlap of the three 
stations. 

\ Re + Ho ratiol = 3 L - 

- 

- 4 - 4 . 1 2 4 4 [ - ~ ~ 2 -  1 2 7 5 6 ~ ~ 1  + 5.059 x 106 - 2249.2 
ratio2 = 0.95493 arcsin Ro + 6378 



The following graph shows the a function of Ro, assuming xp as the proper 
solution to the above this solution is meaningless because it 
requires negative values for the altitude. 

The following graph is a comparison between the visibilities of the simple two- 
dimensional model and the ee = 10" elevation angle constraint two-dimensional model 
(Figure 1 versus Figure 2). 'The ee elevation angle constraint plot (ratio') is the dark 
line on the bottom, indicating the decrease in visibility caused by adding the 
1 0-degree constraint to the LOS. 

Ro(km) 20'00 40'00 6doo 8d00 iodoo 12doo 

f 

4 - 4 . 1 2 4 4 [ - ~ ~ ~  - 1 2 7 5 6 ~ ~ 1  + 5.059 x 106 - 2249.2' 
arcsin 0.48492 

ratio' = 3 
Re + Ro 

n: 

3 R 
ratio = ; arccos ( ) Re + Ro 



To calculate DSN visibility of any Earth-bound satellite 

For graphical representation of coordinate system and vectors used 
See Figures 3 and 4 in "Visibility of Earth-Bound Satellites: A DSN Study" 

Center of Earth is origin of spherical coordinate system 

Phi is (90-degree latitude) (0 degree being straight up z-axis) 
increasing in the south direction (e.g., 40 degrees north latitude 
corresponds to 50-degree phi angle) 

Theta is the angle of longitude with 0 degree in direction of x-axis 
(meridian) increasing in east direction 
(e.g., 40 deg ELONG = 40 deg theta angle) 

c = Canberra; g = Goldstone; o = orbit; m = Madrid (subscripts indicating DSN) 

V(c,g,o,m) = vector drawn from center of Earth to DSN(c,g,o,m) 

V(c,g,o,m)(x,y,z) = X,Y,Z components of V(c,g,o,m) 

V~(c,g,o,m) = vector from station to equatorial orbit {satellite) 

Vo1 = vector drawn to satellite from center of Earth (origin) 
(orbital vector) assuming equatorial orbit 

Vo = transformed orbital vector using y, p (see definitions below) 

Z = angle between V2(c,g,o,m) and V2(c,g,o,m) {zenith angle) 

Re = radius of Earth; Ro = altitude of orbit (all lengths in km) 

THETA0 = incremented orbital angle (increment = dTHETAo) 

GAMMA = angle of inclination of orbit with respect to equatorial plane 
(28.6 degrees = plane of the Moon's orbit) (fixed) 

MU = right ascension of ascending node (angle of twist about z-axis North Pole) 
(user defined) 

PROGRAM DSN.FOR 



- C DEFINING COUNTERS AND DATA 
CHARACTER'64 filename 
INTEGER'2 COUNT 
REAL*4 GAMMA1 ,MU1 

C CREATING A RECORD OF DATA 
C Prompt user for file name and read it: 

WRITE (*,'(A\)') ' Enter file name to store data ' 
READ (', '(A)') filename 

C OPEN FILE CALLED 'filename' 
OPEN (7, FILE=filename,ACCESS='DIRECT', 

+ FORM='FORMATTED1,STA'rUS='NEW,RECL=40) 

'RINT *,'INPUT ANGLE INCREMENT (RADIANS)' 
3EAD *,dTHETAo 
'RINT *,'INPLIT MINIMUM ALTITUDE (KM)' 
READe,RMIN 
'RINT,'INPUT MAXIMUM ALTITUDE (KM)' 
READ*,RMAX 
'RINT *,'INPUT ALTITUDE INCREMENT (KM)' 
?EAD*,dRo 
'RINT','INPUT RIGHT ASCENSION OF ASCENDING NODE (DEGREES)' 
3EAD*,MU1 
'RINT,'INPUT ANGLE OF INCLINATION OF ORBIT (DEGREES)' 
?EAD*,GAMMAl 
IEG=.O1745329252 
'1=3.141592654 
3AMMA=DEG*GAMMA1 
MU-DEG'MU1 
32=DEG*10 
k(P112)-Q2 
NRlTE (7,'(A)',REC=l) 'DSN VISIBILITY DATA' 
NRlTE (7,'(A,F9.2)',REC=2) 'MU (Right ascension)= ',MU1 
NRlTE (7,'(A,F9.2)',REC=3) 'GAMMA (INCLINATION)= ',GAMMA1 

C LATITUDE & LONGITUDE OF DSN STATIONS (SEE FIGURE 3 FOR ALL 
DETAILS) 

PHl~=2.19 
PHlg=.955 
PHlm=.864 
TH ETAc=2.6 
THETAg=4.24 
THETAm=6.21 

,-- C LOOPING ALTITUDE VALLIES BETWEEN RMlN & RMAX 
DO Ro=RMIN,RMAX,dRo 



C LENGTH OF VECTORS OUT TO ORBIT AND DSNs 
RHOo=(Re+Ro) 
RHoc=Re 
RHOg=Re 
RHOm=Re 

C DEFINING COMPONENTS OF VECTOR OUT TO CANBERRA 
Vcx=RHOc'SIN(PHIc)*COS(THETAc) 
Vcy=RHOc*SIN(PHIc)*SIN(THETAc) 
Vcz=RHOc*COS(PHlc) 

C COMPONENTS OF VECTOR OUT TO GOLDSTONE 
Vgx=RHOg*SI N(PH Ig)'COS(THETAg) 
Vgy=RHOg*SIN(PHIg)*SIN(THETAg) 
Vgz= RHOg*COS(PHIg) 

C COMPONENTS OF VECTOR OUT TO MADRID 
Vmx=RHOm*SIN(PHIm)*COS(THETAm) 
Vmy=RHOm*SIN(PHlm)*SIN(THETAm) 
Vmz=RHOm'COS(PHlm) 

- 
C MOVING SATELLITE AROUND ITS ORBIT (DO LOOP FOR THETAo) 

C DEFINING ORBITAL VECTOR COMPONENTS ASSUMING EQUATORIAL 
PLANE 

Vol x=RHOo*COS(THETAo) 
Vol y=RHOo*SIN(THETAo) 
Vol z=o 

C DEFINING ORBITAL VECTOR COMPONENTS TRANSFORMED (MU,GAMMA 
TRANSFORMS) 

Vox=(Vo1 x*COS(MU))-(Vo1 y*SIN(MU)*COS(GAMMA)) 
Voy=(Vo1 x*SIN(MU))+(Vol y*COS(MU)*COS(GAMMA)) 
Voz=(Vol y*SI N (GAMMA)) 

C Canberra to Satellite (V2c vector components) 
v2cx=vox-VCX 
v2cy=voy-vcy 
v2cz=voz-vcz 



Goldstone to Satellite (V2g vector components) 
v2gx=vox-vgx 
v2gy=voy-vgy 
v2gz=voz-vgz 

Madrid to Satellite (V2m vector components) 
V2mx=Vox-Vmx 
V2my=Voy-Vmy 
V2mz=Voz-Vmz 

Dot Products between V2(c,g,m) and V(c,g,m) 
V2cdotVc=(V2cx*Vcx+V2cy*Vcy+V2cz*Vcz) 
V2gdotVg=(V2gx*Vgx+V2gy*Vgy+V2gz*Vgz) 
V2mdotVm=(V2mx*Vmx+V2my*Vmy+V2mz*Vmz) 

Lengths of V2(c,g,m) and V(c,g ,m) 
L V ~ ~ = S Q R T ( V ~ C X * * ~ + V ~ ~ ~ * * ~ + V ~ C ~ * * ~ )  
LV2g=SQRT(V2gx**2+V2gy**2+V2gz**2) 
LV2m=SQRT(V2mx**2+V2my**2+V2mz**2) 
LVc=SQRT(Vcx**2+Vcy**2+Vcz**2) 
LVg=SQRT(Vgx**2+Vgy**2+Vgz**2) 
LVm=SQRT(Vmx**2+Vmy**2+Vmz"2) 

DEFlN ING RATIOS WHICH DETERMINE COS(Zc,g ,m) 
Rc=V2cdotVc/(LV2c* LVc) 
Rg=V2gdotVg/(LV2g*LVg) 
Rm=V2mdotVm/(LV2m*LVm) 

ACCOUNTING FOR ROUNDING DISCREPANCIES (VIOLA'TE ACOS RANGE) 
IF (Rc .GT. 1) R-1 
IF (Rc .LT. -1 ) Rc=-1 
IF (Rg .GT. 1) Rg=l 
IF (Rg .LT. -1) Rg=-1 
IF (Rm .GT. 1 ) Rm=l 
IF (Rm .LT. -1 ) Rm=-1 

Angles between V2(c,g,m) and V(c,g,m) zenith angles 
Zc=ACOS( Rc) 
Zg=ACOS(Rg) 
Zm=ACOS(Rm) 

Deciding if any one of stations (c,g,m) can see satellite 
If ((Zc .LE. Q) .OR. (Zg .LE. Q) .OR. (Zm .LE. Q)) C=C+1 

END DO 
RATIO=1 OO*(C/COlJNTl ) 
PRINT,Ro,'KM', RATIO,'%' 



? 
C WRITING TO 'FILENAME' (DATA) 

COUNT=COUNT+l 
WRITE (7,'(F9.2,A,F9.2,A)',REC=COUNT) Ro,' Kml,RATIO, '%' 
END DO 

CLOSE (7) 
GOT0 10 
END 


