
CHAPTER 23 

Explica tivit y: 
A Mathematical 
Theory of Explanation with Statistical 
Applications (# 1 000) 

By explicativity is meant the extent to which one proposition or event explains why anoth- 
er one should be believed. Detailed mathematical and philosophical arguments are given for  
accepting a specific formula for explicativity that was previously proposed by the author 
with much less complete discussion. Some implications o f  the formula are discussed, and i t  
is applied to several problems o f  statistical estimation and significance testing with intuitive- 
l y  appealing results. The work is intended to be a contribution to both philosophy and 
statistics. 

1. INTRODUCTION 

By explicativity I mean the extent t o  which one proposition or event F explains 
why another one E should be believed, when some o f  the evidence for believing 
E might be ignored. Both propositions might describe events, hypotheses, 
theories, or theorems. For convenience I shall not  distinguish between an event 
and the proposition that states the event. In practice usually only putative 
explanations can be given and this is one reason for writing "should be believed" 
instead o f  "is true," but  explanation in  the latter sense can be regarded as the 
extreme case where belief is knowledge. 

The word "explanatoriness" is not  used here because it is defined in  the 
Oxford English Dictionary as a quality, where "explicativity" is intended to  be 
quantitative as far as possible. Also it has a more euphonic plural. 

The concept o f  explicativity can be thought of as a "quasiutiiity," which is a 
substitute for utility, preferably additive, when ordinary ut i l i ty  is diff icult t o  
judge. The condition o f  additivity for quasiutilities is necessary t o  justify the 
maximization o f  their expected values (#618). The need for at least a rough 
measure o f  explicativity arises i n  pure science more obviously than i n  commerce 
where utilities can often be judged i n  financial terms. But if a measure o f  expli- 
cativity is proposed i n  general terms it should make sense whatever the field o f  
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application. One such field consists of the estimation of statistical parameters 
since any such estimate can be regarded as a hypothesis that helps to explain 
observations. Examples of statistical estimation and of significance testing will 
be given i n  this paper., 

The topic of explicativity belongs to the mathematics of applied philosophy. 
The present account is based on (#599, #846, Good, 1976) and goes much 
further, though it does not cover everything on the topic in the previous publi- 
cations. 

The advantage of the mathematics of philosophy over classical philosophy i s  
that a formula can be worth many words. The topic i s  mathematical because i t  
depends on probability. In  this respect explicativity resembles some explications 
for information, wei h t  of evidence, and causal propensity, and i t  will be con- f 
venient to list these explications first, without details o f  their derivations. 

I t  may be possible sometimes to invert our approach, and to use explicativity 
inequalities to aid us in our probability judgments. 

2. NOTATION 

Let A, B, C, E, F, G, H, j, K, sometimes with subscripts or primes, usually 
denote propositions, or events, or hypotheses, etc. For example, E often denotes 
an event and also the proposition that asserts that the event "obtains." Con- 
junctions, disjunctions, and negations are denoted by &, v, and a vinculum 
[macron] respectively. I shall not distinguish between hypotheses, theories, and 
laws. 

Let P(EIH) denote the probability o f  E given H or assuming H. Similarly let 
P(H) denote the initial probability of H and let P(H1E) denote i t s  final probabili- 
ty. Often P(H)/P(H1) is less difficult to judge than P(H) and P(H') separately. In 
practice all probabilities are conditional so that P(EIH), P(H) and P(HIE) are 
abbreviations for P(EIH & G), P(HIG), and P(HIE & G), where G i s  some propo- 
sition, usually complicated, that i s  taken for granted. I t  will sometimes be left 
to the reader's imagination to decide whether any probability mentioned i s  
physical, logical, or subjective. We shall assume the usual axioms o f  probability 
whichever of these interpretations of probability i s  intended. 

The information concerning a proposition A provided by another proposition 
B, given G throughout, i s  denoted by I(A:BIG) and i s  defined by 

(We shall not niggle about zero probabilities.) The base of the logarithms exceeds 
1 and determines the unit in  terms of which information i s  measured. For 
example, i f  the base is the tenth root of 10, the unit i s  the deciban, a word 
suggested by A. M. Turing in  1941 in  connection with "weight of evidence." 
With base 2 the unitiis the "bit." When G i s  taken for granted we write I(A:B), 

and a similar abbreviation will be used for other notations. Sometimes I(A:A) i s  
denoted by /(A) and (1) implies 

For a derivation o f  these formulae see, for example, p. 75 of #13 and #505. 
Mathematical expectations of (1) occur in Shannon's theory of communication 
(1948). Information has the additive property 

The weight o f  evidence i n  favour o f  HI as compared with Hz provided by E 
given G i s  defined by 

= log P(EIHI & G )  

P(EIH2 & G) 

where 0 denotes odds (the ratio of the probabilities of H, and H,). Weight of 
evidence, which i s  the logarithm of a Bayes factor, has the additive property 

and of course we can condition on G throughout. I f  the disjunction HI v Hz i s  
also taken for granted, so that Hz becomes HI, the negation of HI, then the 
notation W(Hl/H2 :E) can be abbreviated to W(H, :E). 

For some literature on weight of evidence see Peirce (1878), #13, and nu- 
merous papers cited in #46. 

The causal support for E provided by F, or the propensity o f  F to cause E, 
denoted by Q(E:F), where E and F denote events, i s  defined (#223B) by the 
equation 

Q(E:F) = w(F:EIu & L), (6) 

the weight of evidence against F i f  E did not occur, given the state U of the 
universe just before F occurred, and also given all true laws L of nature. This 
quantitative explication of causal propensity i s  basically consistent with the 
requirements of Suppes (1970) which, however, are only qualitative. The rela- 
tionship between this monograph and W123B i s  discussed in #754. 

The need for mentioning U in (6) i s  exemplified by the fact that seeing a 
flash of lightning i s  not an important cause of hearing loud thunder soon after- 
wards. Both events were caused by a certain electrical discharge. Equally, the 
thunder i s  not explained by the visual experience of lightning. On the other hand 
seeing the lightning does explain why one believes that thunder will soon occur; 
whereas hearing thunder i s  a good reason for believing that the lightning flash 
previously occurred. The experiences are thus valid reasons for prediction and 
retrodiction respectively. 
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If F occurs after El i t  turns out that Q(E:F) = 0. This is because U "screens 
off '  E from F under usual assumptions about the nature of time. This notion ,of 
"screening off" is explained in more detail by Reichenbach (1956, pp. 201-205) 
and herein, p. 216. I t  isanalogous to a Markov chain property. 

One potential value o f  measuring causal tendency quantitatively is for the 
apportioning of credit and blame, as is done, for example by the British Admiral- 
ty i f  two ships collide, though without using (6), and would be done more 
generally i n  the courts of justice i f  they thoroughly deserved their name. 

3. PHILOSOPHICAL ASPECTS 

There i s  a large and interesting literature on the philosophy of explanation (for 
example, Mill, 184311 961 ; Hempel, 1948165; Braithwaite, 1953; Popper, 1959; 
Nagel, 1961 ; Scheffler, 1963; Kim, 1967; Rescher, 1970; Salmon, 1971 ; and 
numerous further references in these publications). The present account i s  
succinct bu t  i s  intended to be full enough for the reader to see how the statisti- 
cal examples f i t  into the philosophical background. Also I believe that the 
philosophical discussion contains some new ideas. 

The following terminology is fairly standard: what is to be explained or par- 
tially explained i s  called the explanandum, and what explains i t  the explanans. 

There are at least three main categories o f  explanation, with various subcate- 
gories. They correspond roughly to the questions "what," "how," and "why." 
(1) Explaining "what, " or semantic explanation: answering the question "What 
do you mean?" 

(1 .I ) Dictionary definition. 
(1.2) Philosophical explication: extraction of more consistent and precise 

meaning or meanings by analytic consideration of the usage of words by "good" 
authors. This definition involves an implicit iterative "calculation" because we 
should say what i s  meant by a good author. 
(2) Explaining "how, " or descriptive explanation: answering the question "How 
i s  this object construcFed?" 

(2.1 ) i n  Nature; 
(2.2) i n  manufacture. 

(3) Explaining "why, " or causal (and probabilistic causal) explanation 
(3.1) The explanandum i s  an event (or the proposition describing an event). 
(3.2) The explanandum i s  a class of events. 
(3.3) The explanandum is a scientific law. 
(3.4) Explaining why the explanandum should be believed (to some extent), 

when some knowledge supporting this belief, apart from the explanans itself, 
might be ignored. (For example, we may "know" E i s  true and still demand an 
explanation.) Here the explanans is a (partial) cause o f  belief in E rather than a 
cause o f  E itself, though i t  might be both. (Observing the shadow of an elephant 
can explain why we beleve an elephant is present; whereas observing an elephant 
can explain both why the shadow is there and why we believe the shadow should 
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be there.) An explanation of this kind might be a prediction or a retrodiction, or 
a reasoned argument, or a mixture o f  two or three of these activities. We might 
have called this kind of explanation "diction" i f  this word had not been pre- 
empted, and anyway a "dictionary" deals with category (1.1). A retrodiction i s  
always a "belief-type" of explanation, rather than a causal type, i f  i t  i s  assumed 
that causes always precede their effects. I shall make this assumption in this 
paper though I am not dogmatic about it (see ##882, 1322A). 

(3.4.1) The explanandum is a mathematical or logical theorem and the 
explanans i s  a proof or heuristic argument. Sometimes an incomplete proof i s  a 
better explanation of why a theorem i s  true than a complete proof. For exam- 
ple, if AOB i s  a triangle with a right-angle at 0, and i f  a perpendicular i s  dropped 
on AB from 0, then the three triangles now present all have the same shape so 
that their areas are proportional to the squares of corresponding linear dimen- 
sions. This explains why Pythagoras's theorem i s  true in  the sense that the proof 
i s  not artificial. 

Sometimes "teleological explanation," in which future goals are mentioned, i s  
regarded as forming an additional category, but, unless we allow for precogni- 
tion, and we shall not do so, this category i s  not distinct from categories (3.1)- 
(3.3). This fact i s  well known. For example, a homing missile, though i t  acts 
purposefully, obeys the usual laws o f  physics. I t  i s  its own presentprediction o f  
the future that affects it, not the future itself. 

The present work i s  an exercise in applied philosophical explication (category 
1.2) and its subject matter i s  category (3). Headings (1.1) and (2) are ignored. 
The explication of explanation in category (3) often depends on dynamic or 
evolving probabilities which can be changed by reasoning alone as in a game of 
chess, and not by new empirical observations. This notion may superficially 
appear fancy, and i s  usually overlooked, but I am convinced that i t  i s  essential 
(see especially $338). This i s  obvious when the explanation comes under cate- 
gory (3.4.1), though the above example concerning Pythagoras's theorem shows 
that the notion of mathematical explanation cannot be fully captured in terms 
of probabilities alone. We shall soon see that physical explanation also requires 
something extra. 

Dynamic probabilities are also required for the rest of category (3), as shown 
in ##599, 846. For example, to give the argument in outline, the apparent 
motions o f  the planets (event E), as projected upon the celestial sphere, had 
their dynamic probabilities enormously increased, in  ratio, when i t  was noticed 
that the motions are implied by the inverse square law H of gravitation. This was 
because the inverse square law had, for most scientists, a non-negligible prior 
probability, owing to its simplicity and to the analogy o f  light emerging from a 
point source, and because i t  explained why objects like apples fall. That apples 
behave in some respects like planets i s  an example o f  what William Whewell 
called the "consilience of laws": see Kneale (1953, pp. 364-366). Thus P(E), 
which exceeds P(EIH)p(H), is much greater than the original value of P(E). This 
would be true even without bringing in "apples" or the consilience of laws, so 
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that our argument is distinct f rom Whewell's and Kneale's, and has a somewhat 
clearer need for the notion o f  dynamic probability. 

T o  explain why a physical event E occurred is t o  explain what caused it or 
tended t o  cause it, and thi; requires explicit or implicit reference to  a causal 
chain or causal network that leads t o  E over some time interval o f  appreciable 
duration t. The longer the duration t the fuller the explanation. A causal net- 
work cannot be described without at least implicit reference t o  laws of nature. 
This shows that probabilities alone, without reference t o  physical structure, 
cannot fu l ly  capture the notion o f  physical explanation. Again, if E is itself a law 
o f  nature, an explanation o f  it must be i n  terms o f  yet other laws of nature. 
These wi l l  often be more general than El though explanations by  analogy are 
also possible, and then the explanans might consist of laws no  more general than 
E. Thus, whether the explanandum denotes an event (or set o f  events) or a law 
o f  nature, the explanans wi l l  involve laws of nature, and this is a view that has 
been adopted by  many philosophers o f  science since Mill (1 843) or earlier. An 
immediate consequence of this view is that an event E Gannot be regarded as an 
explanation o f  itself, since we need t > 0, but  i f  you have knowledge that E is 
true, then this of course ful ly explains your belief i n  E. Usually in  practice our 
explanations are only putative and only explain beliefs, for real causal networks 
are enormously complex. Accordingly, the explanation o f  beliefs will be our 
main topic. 

Sometimes the laws o f  nature that form part of the explanation o f  E are 
taken for granted because o f  their familiarity. For example, when we say that a 
window-pane broke because Tom threw a stone at it, we are taking for granted 
that glass panes are liable t o  break when h i t  b y  fast-moving hard objects that are 
no t  too small. Thus a law of physics is here implicit i n  the explanation. As 
another example, we might say that it is bad for Ming Vases to  leave them 
unsupported in  mid-air. 

I n  deterministic physics a specific event E can sometimes be explained by  
some boundary conditions B, including initial conditions, combined with differ- 
ential equations that describe a general law, L. Then B & L explains E, but  some- 
times, as i n  the example just given, we call B the explanation when L is taken for 
granted. The division o f  an explanation into a contingent pprt and general laws 
is no t  restricted to  physics. 

It is di f f icul t  t o  specify sharply whether one law is more general than another. 
Nagel (1 961, pp. 37-42) makes a valiant attempt which he does not  regard as 
fu l ly  successful, and I shall here merely point out  the relevance o f  the m a t t b  to  
statistical problems. Suppose that a random scalar or vector x has a probability 
density function f(xl0), where 8 is a parameter which is also a scalar or vector. 
The distribution determined by  f(xl8) is a "law" i n  the sense that it says some- 
thing about a population of values of x, and it is often called a law (see, for 
example, Jeffreys, 1939/61). Any proposition o f  the form 0 E O (some set of 
possible values o f  8)  is a disjunction o f  laws, and can again reasonably be called 
a law. Note that 8 must be fixed before x can take on a specific value so the time 
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direction is appropriate. If 0 itself is regarded as a random scalar or vector 
containing hyperparameters, as i n  hierarchical Bayesian techniques (see, for 
example, ##26, 398, 1230), then a specification of a constrained set of values 
for these hyperparameters could reasonably be regarded as a law that is more 
general than 0 E O. For it can be regarded as a proposition about a superpopula- 
tion. And similarly for hyper-hyperparameters, etc. A law o f  the form 0 E O is a 
somewhat primitive form o f  explanation because it does not  give detailed 
information about the structure o f  the (probabilistic) causal network that leads 
t o  an observed value of x, but  we cannot usually demand more from statistical 
estimation procedures. I n  this example there is no  contingent part in  the expla- 
nans, whereas i n  regression problems the value of the concomitant ("indepen- 
dent") variable is contingent, when regarded as part o f  the explanation o f  a 
specific value of the dependent variable, whereas the equation o f  the regression 
line is lawlike. 

There is an intimate relationship between explanation and causation. The 
broken window was both caused and explained by  Tom's naughty behavior. This 
relation can be formalized t o  some extent in probabilistic terms: if P(EIB & L )  > 
P(EIL) then B is a probabilistic cause, and a putative partial explanation o f  E, 
when the law L is taken for granted. On the other hand, i f  P(EI B & L )  > P(EIB), 
then L is a putative partial explanation o f  E, but hardly a probabilistic cause, 
when B is taken for granted. So causation and explanation are related but are 
not identical (see also $9). 

We shall denote by q(E:FIG) the explicativity or explanatory power o f  F with 
respect to  El given background information G, and shall arrive at a formula for 
it, based on some desiderata. Here F may or may not  include general laws. This 
notation interchanges the positions o f  E and F as used in  ##S99, 846. The 
reason for the reversal is that it is more consistent with the notation Q for causal 
propensity. For grasping the notation we may read q(E:FIG) from left  to right 
as "the explainedness o f  E provided b y  F given G," so that the colon can be 
pronounced "provided by" whether we are talking about information I, weight 
o f  evidence W, causal support Q, or explicativity q. (H+ving two names "explica- 
tivity" and "explainedness" for the same thing is analogous to calling P(E1H) 
both a probability of E and a likelihood o f  H.) By calling G "background infor- 

-mation" we mean that it is assumed to  be true and that it has already been taken 
in to account for helping t o  explain E. (See Desideratum (ii i) in  $4.) There may 
also be further evidence G', such as direct evidence that E is true, which is 
deliberately ignored and is omitted from our notation. 

We shall assume that v(E:FIG) depends only on various probabilities, and we 
shall not incorporate those requirements that are necessary for regarding F as a 
partial explanation of E and which do no t  depend on these probabilities. Thus 
v(E:FIG) will denote a putative explicativity when F is a putative explanation o f  
E (given G) and will otherwise denote something more general. I n  fact it will be 
a measure of the degree t o  which F explains why y o u  should believe E, given G 
a l l  along, and disregarding evidence for E that is n o t  provided by F and G. We 
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shall call q "explicativity" in all cases although "dictivity" might be preferred. 
(See the remark about "diction" under category [3.4] .) The name is less impor- 
tant than that q should measure something of interest. 

Some philosophers claim, with some justification, that F cannot be a (proba- 
bilistic) explanation of E unless F is true. But in practice F can perhaps never be 
known to  be true, even in pure mathematics, so that in this paper we shall regard . . 
nearly all explanations as only putative. I n  practice we talk about "explana- 
tions" without saying "putative" each time, and accordingly we sometimes put 
"putative" in parentheses or omit it. 

We regard explanations as good or bad depending in part on whether the 
probability of the explanans i s  high or low. Let us then allow the explicativity 
q(E:F) to  depend on P(F). When F i s  assumed to be known to be true let us use 
the somewhat hypallagous expression informed explicativity. An informed 
explicativity is of course an extreme case of a (putative) explicativity. 

As an example of the distinction between (putative) explicativity dnd in- 
formed explicativity let us again consider the broken window (event E). The 
hypothesis F that Tom threw a stone at i t  has more (putative) explicativity than 
that the Mother Superior did so (hypothesis FMS). For we believe that Tom i s  
naughtier than the Mother Superior as well as being a better shot. On the other 
hand, if we saw the Mother Superior throw the stone vigorously, FMS would 
have very high informed explicativity. 

By using the expression "informed explicativity" we do not wish to imply 
that the whole causal network preceding E i s  known; we mean only that F 
becomes known to be true, but i s  not taken for granted in advance. The in- 
formed explicativity of F with respect to E might be high and yet i t  might turn 
out that F i s  not part of the true explanation of E after all. 

Both a (putative) explicativity and i t s  extreme case, an informed explicativi- 
ty, are intended to be measures of the explanatory power o f  F with respect to E 
relative to the knowledge that we (or "you") have, and that knowledge will 
seldom include the certainty of F. We can only hope to measure the extent to 
which our beliefs about F explain why we should believe E (imagining E to be 
unobserved). Under this interpretation i t  i s  not necessaryqthat F should precede 
E chronologically; and q(E:FIG) will sometimes measure the predictivity or 
retrodictivity of F with respect to  E, or some mixture. Again, i f  F is a "law," i t  
need have no position in time, and i t  might be used for prediction, retrodiction, 
or putative explanation o f  E. 

Since we regard informed explicativity as an extreme case of (putative) 
explicativity, we do not need a separate notation for it. It will be merely a mat- 
ter of putting P(F1G) = 1 or P(F) = 1 in whatever formula we use for q(E:FIG) 
or q(E:F). 

We conclude this philosophical background with one further property of 
explanation. Most philosophers believe that an explanation should be based on 
all relevant evidence apart from the evidence G' that is deliberately ignored such 
as the direct observation of E. With our notation q(E:FIG) this would mean that 
F & G must contain all evidence relevant to El apart from G'. In practice, when 
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we are estimating an explicativity, we must make do with the evidence that 
appears to us to be sufficiently relevant. 

4. THE DESIDERATA AND EXPLICATION 
FOR EXPLICATIVITY 

As a preliminary to proposing some desiderata for explicativity, let us consider 
a naive approach and an early historical approach to explanation. 

Perhaps the most naive suggestion i s  that E is explained by H if H logically 
implies E. This i s  'neither a necessary nor a sufficient condition for H to be a 
good explanation of E. For example, the hypothesis 0 = 1 logically implies 
everything and in particular i t  implies E, but 0 = 1 i s  an extremely poor (puta- 
tive) explanation of anything! Nor does i t  help to append some irrelevant laws of 
nature so as to make the explanans lawlike. So we need something less naive. Let 
us recall a little history. 

According to the translation by Charlton (1970, p. lo) ,  Aristotle said " . . . 
i t  i s  better to make your basic things fewer and limited, like Empedocles." In the 
early fourteenth century the "doctor invincibilis," William of the village of 
Ockham in Surrey said "plurality i s  not to be assumed without necessity." This 
sentiment had been previously emphasized by john of the village of Duns in 
Scotland who has often been thought, apparently incorrectly, to have been 
William of Ockham's director of studies (Anon., 1951; Moody, 1967). The 
saying that "entities should not be multiplied without necessity," though 
apparently never expressed quite that way by William of Ockham, has come to 
be known as "Ockham's razor." For a detailed history, but with the Latin 
untranslated, see Thorburn (1 91 8). 

A more modern interpretation of the Duns-Ockham razor i s  that, of two 
hypotheses H and H', both of which explain El the simpler i s  to be preferred 
(see, for example, Margenau, 1949). But the hypothesis 0 = 1 i s  simple, at least 
in the sense of brevity, so we need to sharpen the razor some more. The next 
improvement i s  that i f  H and H' both imply E, then the hypothesis with the 
larger initial probability i s  preferable. In nearly all applications the judgment of 
whether P(H) > P(H') is subjective or personal, although different people often 
agree about a specific judgment. Note that if P(H) > P(H1), and H and H' each 
imply E, then P(HIE) > p(HIIE), that is, the final probability o f  H exceeds that 
of H'. One advantage of this way of interpreting Ockham's razor i s  that i t  rules 
out impossible explanantia such as the hypothesis 0 = 1. 

Whereas the initial probability of a hypothesis has something to do with its 
simplicity the relationship i s  not obvious, and if we express all our formalism in 
terms o f  probabilities we do not need to refer explicitly to simplicity or com- 
plexity. In #599 1 defined the complexity of a proposition H as -logP(H), but 
I retracted this in #876. There is more than can be and has been said on the 
relationship between complexity and probability, but to avoid distraction we 
discuss this matter in appendix A. 
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What i f  the two hypotheses H and H' do not logicilly imply E but merely 
increase i t s  probability, so that 

P(EI H) > P(E) and P(EI H') > P(E)? 

I s  H a better explanation of E than H' i f  P(EIH) > P(EIHP)? Not necessarily if 
P(H) < P(H1). Some compromise is  required, to be discussed later. 

Let us assume the following desiderata. (i) The explicativity of H with respect 
to E, denoted by q(E:H), i s  a function of at most 52670 variables, namely all 
probabilities of the form P(AI B) where A and B run through all the propositions 
that can be generated from E and H by conjunctions, disjunctions, and nega- 
tions, and where each of these probabilities i s  not necessarily equal to 0 or 1. I t  
is not important to check that 52670 i s  the correct number because an equiva- 
lent assumption i s  that q(E:H) depends at most on P(E), P(H), and P(E & H). 
(ii) I f  K and F have nothing to do with H and E then q(E & F:H & K) depends 
only on 77(E:H) and q(F:K). (iii) q(E:HIH) does not depend on E or H (in fact 
you can reasonably call i t  zero). (iv) q(E:H) increases with P(EIH) if P(E) and 
P(H) are fixed. (v) q(H:H) > q(T:T) where T i s  a tautology. (vi) q(T:H) 9 
q(T:T) (because a tautology needs no explanation). 

Then i t  can be proved [see appendix B] that q(E:H) must be some increasing 
function of I(E:H) - yl(H) where y does not depend on the probabilities and 
where 0 < y < 1 (see appendix B). Since the main purpose is to put explicativi- 
ties in order we may as well take q(E:H) = l(E:H) - yl(H). Moreover this chbice 
converts (ii) into the strictly additive property 

V(E & F:H & K) = ~ ( E : H )  + ~ ( F : K )  (7) 

(when K and F have nothing to do with H and E), and this justifies us in regard- 
ing q(E: H) as a proper quasi-utility. Various forms of q(E: H) are: 

~ ( E : H )  = I(H:E) - ~I(H) (8) 

= logP(E1H) - logP(E) + ylogP(H) (9) 

= I(E) - I(EIH) - ~I(H). (1 0) 

We must adjust equation (9), when dynamic probabilities are relevant, as a 
formula for "dynamic explicativity," qo (E:H), namely 

qD (E:H) = IogP, (EIH) - IogP, (E) + ylogP(H). (9 D) 

Here P,(E) i s  the initial probability of E, judged before H i s  brought to your 
attention, whereas P, (EIH) i s  the conditional probability of E given H after H 
i s  brought to your,attention. When H i s  a good simple theoretical explanation of 
El as in the example of the inverse square law, i t  can easily happen that PI (EIH) 
P(H), which is  equal to P, (E & H), ip much larger than Po (E). When dynamic 
probabilities are relevant it i s  ambiguous to omit the subscripts 0 and 1 from the 
notations, but sometimes it may not be too misleading to write q(E:H) instead 
of ~D(E:H). For, in ordinary linguistic usage, the inverse square law i s  called 
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simply an "explanation" of the planetary motions. I t  happens to be a dynamic 
explanation in both senses of "dynamic." 

A few exercises, extracted from a 4 6 ,  are: 

a modified additivity property! If H and L are mutually exclusive then H v L has 
less explicativity for E than does H if and only if 

For example, when P(H) = P(L) and y = %, the right side i s  0.414. 

5. THE CHOICE BETWEEN HYPOTHESES 

More important than assigning an explicativity to a single hypothesis, with 
respect to E, i s  deciding which of two hypotheses H and H' has the greater 
explicativity and by how much. Then the term logP(E) in (9) i s  irrelevant, 
because i t  i s  mathematically independent of the hypotheses. Let us denote 
H v H' by J and take i t  for granted, as i s  permissible when we are choosing 
between H and H'. Denote by q(E:H/H'IJ) or q(E:H/H') the amount by which 
the explicativity of H exceeds that of H', or 'the explainedness of E provided by 
H as against H' (given J)'. Then 

Equation (18) has an interesting interpretation. I t  exhibits the excess in 
explicativity of H over its negation as a compromise between two extremes, 
the weight of evidence on the one hand and the final log-odds on the other. The 
former of these extremes (y = 0) corresponds to the philosophy of "letting the 
evidence speak for itself" (as advocated by some in the Likelihood Brother- 
hood), and the latter (y = 1) to that of preferring the hypothesis of maximum 
final probability. Neither of these two philosophies i s  tenable as we may see 
clearly by an example, although their implications are reasonably judged to be 
good enough in some circumstances. 

Let E denote the proposition that planets move in ellipses, let H denote the 
inverse square law of gravitation, and K that there is  an elephant on Mars. I f  we 
took y = 0 we'd find that q(E:H & K) = q(E:H), in other words that the explica- 
tivity of H would be unaffected by cluttering i t  up with an improbable irrelevant 
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elephant. Thus the size of 7 depends on how objectionable we regard it to have 
clutter, or to "multiply entities without necessity." 

The case 7 = 0 of (8)) namely the mutual information between E and H, was 
proposed independently as an explication of explanatory power by Good (1955) 
and Hamblin (1955), both in relation to Popper's writings. The fact that it did 
not allow for clutter was pointed out in #599, and this explication was therefore 
called weak explanatory power. In  our present terminology it i s  the "informed 
(putative) explicativity" of H. Expected amounts of information of this kind, 
and of the effectively more general notion of weight o f  evidence . . . , were 
related t o  statistical physics by Gibbs (1902, chap. X I )  and Jaynes (1957), and 
to non-physics statistical practice by, for example, Turing in 1941 (see #13), 
Jeffreys (1 946), Shannon (1 948), Good (1 950/53), Kullback & Leibler (1 95l), 
Rothstein (1 951 ), Cronbach (1 953), #77, Lindley (1956)) Jaynes (1957, 1968)) 
Kullback (1959), ##322, 524, Tribus (1969)) #755, over thirty other publica- 
tions by the present writer, and in several publications by Rothstein and by 
S. Watanabe. 

Next suppose we take 7 = 1, then q(E:H) would reduce to logP(HIE) and there 
would be no better hypothesis than a tautology such as 1 = 1. This shows, as in 
Bayesian decision theory, that i t  i s  inadequate to choose the hypothesis of 
maximum final probability as an unqualified principle. 

So we must take 0 < y < 1. There may not be a clearly best value for the 
"explicativity parameter" y, but y = K seems a reasonable value. It exactly 
"splits the difference" between the two extreme philosophies just mentioned, 
and is also the simplest permitted numerical constant. 

The sharpened razor i s  the recommendation to choose the hypothesis that 
maximizes the explicativity with respect to E, or for all known evidence. It 
differs from a central theme of Popper's philosophy, namely that a useful 
theory is one that i s  of low (initial) probability and highly testable. Certainly 
high checkability is a desirable feature of a theory, and, i f a  theory turns out to  
have a high final probability, then a low initial probability i s  desirable because it 
shows that the theory was informative. But Popper's philosophy does not allow 
for final probabilities. 

I t  is o f  interest to  consider how much more explicative E itself i s  than H, 
relative to E, 

or, when dynamic probabilities are used, 

qD (E:E/H) = 710gPo(E) - ylogP(H) - l o g 1  (EIH). (19 0) 

For q(E:E/H) we have the following theorem: 
When dynamic probabillties are not  used, there is no  more explicative prop@ 

sltion relative to Ethan is E itself; in symbols q(E:E/H) > 0, that is, 
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Equality occurs only if P(EIH) = P(HIE) = I .  The corresponding result for 
dynamic explicativities is false. 

Proof; The right side of (19) can be written 

Since P(E & H) exceeds neither P(E) nor P(H), this expression i s  at least as large 
as both (1 - y)[logP(H) - logP(E)] and y[logP(E) - logP(H)] and must there- 
fore be non-negative. I t  vanishes only i f  P(H) = P(E) = P(E & H), that is, only i f  
P(E1H) = P(HJE) = 1, which for practical purposes means that E and H are 
logically equivalent. 

That the theorem i s  false for dynamic explicativities i s  clear from the example 
of the planetary motions and the inverse square law. The dynamic explicativity 
q, (E: H) can exceed, equal, or "su bceed" q, (E: E). 

When 7 = % we have, when we do not use dynamic probabilities, 

which i s  symmetrical in E and H, just as I(E:H) is, though a closer analogue i s  
I(E:E) - I(E:H) = I(E1H) which i s  not symmetrical. (Of course it can be forcibly 
symmetrized by writing /(ElH) + /(HIE).) If we accept the value y = K, (21) 
could be called the mutual explicativity "distance" between E and H, by analogy 
with the name "mutual information" for /(E:H). I t  equals 0 i f  H = E and - i f  
H = E, and resembles I(EIH) in this respect. Symmetry in E and H i s  an elegant 
property but it i s  not a compelling desideratum. The triangle inequality i s  not 
satisfied, but it may be of interest that 

so that the "triangles" for which the triangle inequality i s  valid are the same for 
the functions (XE) (XF)q(E:E/F) and (XE)(XF)I(EI F)(in Alonzo Church's X 
notation). 

6. REPEATED TRIALS 

Sometimes E can be defined as a compound event, or time series, which de- 
scribes the probabilistic outcome El & E, & . . . & EN of an experiment 
performed "independently" N times under essentially similar circumstances. I f  
N i s  large, the frequencies of the various outcomes settle down, with high 
probability, to a distribution. A hypothesis H that predicts this distribution has 
an expected explicativity gain per observation, as compared with another hy- 
pothesis H', and this gain tends in probability to 

which is proportional to the expected weight of evidence per observation. The 
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second term in (18) gets divided by Nand so contributes nothing to the limiting 
value (23). Thus, for "repeated trials," the application of the notion of explica- 
tivity to statistics will lead to the same results as when (expected) weight of 
evidence is used as a quasiutility, as in numerous publications cited earlier. In 
particular, i f  H asserts the true physical probability density p(x,y) of two ran- 
dom variables, whereas hypothesis H' asserts that the density is P(x)~(Y),  then 
q(E:H/H1)/~ tends in probability to  

which i s  1 - y times the "rate of transmission o f  information" concerning x 
provided by y and can of course be expressed in terms of three entropies. This 
formula can be used in the choice o f  an experimental design. The factor 1 - 
is  irrelevant for this purpose: see Cronbach (1953), #77, and especially Lindley 
(1 956). Thus, in this application, the value o f  y does not matter. 

Greeno (1 970)) unaware of these references, suggested rate o f  transmission of 
information as an explication for explanatory power. We see from the above 
argument how this proposal i s  deducible from the notion of explicativity, and 
even from the earlier (Good, 1955; Hamblin, 1955) special case o f  weak explana- 
tory power (informed explicativity), when E denotes an "infinitely repeated 
trial." 

7. PREDlCTlVlTY 

As we have seen, a probabilistic prediction of the result of an experiment or 
observation is a special case of a putative explanation, being made before the 
experimental result occurs. In these circumstances it is natural to measure the 
predictivity of a hypothesis as the mathematical expectation of the putative 
explicativity, the expectation being taken over the population of possible out- 
comes. It i s  appropriate to take expectations of q rather than of some mone 
tonic function of q because of the additive property (7). 

The explicativity o f  HI per trial, with respect to repeated trials, as given by 
(23)) is  formally nearly the same as predictivity, owing to the law of large 
numbers. 

For a theory with a wide field o f  possible applications, the notion of pre- 
dictivity is necessarily vague; but it might be defined as the expected explica- 
tivity over all future observations with discounting of the future at some rate. 
The concept is important in spite of its vagueness. 

For experimental design, predictivities (expected explicativities) are natural 
quasiutilities. This fact can be regarded as an explication in hindsight why 
entropies occur in the work of Cronbach (1953) and Lindley (1956). In virtue 
of these two publications it is not necessary to consider experimental design 
further here. Instead, we work out in detail only examples of estimating param- 
eters in a distribution law, after observations are taken. In this estimation 
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problem entropies do not occur because expectations are not taken. Hypothesis 
testing can be regarded as a special case of parameter estimation (and vice versa). 

8. "COLLATERAL" INFORMATION VERSUS 
BACKGROUND INFORMATION 

Consider the propositions 

E: Jones won the Irish Sweepstake, 

H: Jones bought a ticket in this lottery, 

and for the sake of simplicity assume that 

P(H) = 2-8,  P(E(H) = 2-'O, and therefore P ( E )  = P(E & H) = 2-". 

Then, i f  y = %, we have q(E:H) = 8 - 812 = 4 bits. I f  we knew all along that 
H was true we would have q(E:HI H) = 0, meaning that H cannot help to explain 
E i f  we have already taken H into account. But in another sense, i f  we discover 
that H i s  true we raise the probability of H to  1, and the explicativity of H with 
respect to E, which i s  now "informed" explicativity, i s  I(E:H) = 8 bits. Thus, for 
the sake of completeness, i t  i s  convenient to have a notation for the explicativity 
of H when its probability i s  conditional on some collateral information K. Let us 
use a semicolon to mean "given the collateral information." Then we have 

where we have included G for greater generality. In particular, 

q(E:H; H) = I(E:H). (26 

Background information i s  taken for granted in computing all the probabili- 
ties, whereas collateral information affects only the probability of the explanans 
H and i s  not taken into account when computing the probability of the expla- 
nandum E. Of course q(E:H; H) is the informed explicativity of H. No special 
terminology for q(E:HIH) i s  proposed because i t  necessarily vanishes. 

The notation q(E:H; K) or q(E:H; KIG) helps to formalize the familiar 
situation in which an explanans H i s  strengthened by having its own probability 
increased by evidence K. For example, when we discover that Tom was at the 
scene of the crime, the probability i s  increased that he threw a stone at the 
window. Explicativity depends on the explanandum, the explanans, the collater- 
al information, and the background information. We have 

q(E:H; K) = q(E:H & K) i f  and only i f  P(EIH & K) = P(E1H). (27) 

9. THE QUANTITATIVE DISTINCTION BETWEEN 
EXPLlCATlVlTY AND CAUSAL PROPENSITY 

In our lottery example the explicativity of the ticket-purchase, with respect to 
El is appreciable (whether the explicativity i s  "informed" or not), although 
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P(EIH) is small. There is a distinction between (putative) explicativity and causal 
propensity: the purchase o f  the ticket did not  do much to cause E although i t  
was a necessary condition for it. If Jones had not won the sweepstake, i t  would 
have been negligible evidence against his having bought a ticket, so, according t o  
(6), the causal propensity of  the purchase is small. Similarly, if Ms Aksed is h i t  
by a small meteorite when out walking, we would not blame her and accuse her 
o f  suicidal tendencies. Her decision to go for a walk was a necessary condition 
for the disaster, but if she had not been h i t  by a meteorite, it would have been 
negligible evidence that she was indoors when the meteorite fell. The insurance 
company would call the incident an Act o f  God. ' 

10. APPLICATIONS TO STATISTICAL ESTIMATION AND 
SIGNIFICANCE TESTING 

. . . [The eight pages omitted here show that v(E:H) can be applied to statistics 
with entirely sensible results. This confirms the reasonableness o f  q as an expli- 
cation of  explicativity.] 

11. FURTHER COMMENTS CONCERNING THE VALUE OF 7 

If no other desiderata can be found for fixing y, the value y = % could often 
reasonably be adopted on grounds o f  maximum simplicity. This choice can itself 
be regarded as an application of  a form o f  the Duns-Ockham razor (of higher 
type so t o  speak). Moreover there are many scientists who believe that the 
notion of  simplicity is better replaced by that of  elegance,'~or aesthetic appeal. 
For example, Margenau (1949) says "The physicist is impressed not solely by its 
[a  theory's] far-flung empirical verifications, but above all by the intrinsic 
beauty o f  its conception which predisposes the discriminating mind for accep- 
tance even if there were no experimental'evidence for the theory at all."Again 
Dirac (1963) says" . . . i t  is more important to have beauty in one's equations 
than to have them fit experiment. . . . That is how quantum mechanics was 
discovered," and I believe Dirac expressed this view in  conversation at least as 
early as 1940. From this point o f  view the value y = % gains from the elegant 
symmetry o f  equation (21). . . . [As a discussion point, I believe that beauty 
is often a matter of simplicity arising out of  complexity arisingout of  simplicity.] 

12. SUMMARY 

Philosophical aspects of explanation were discussed in  33 leading up t o  an 
informal definition o f  v(E:FIG) and to the desiderata and exact explication o f  
q in 54  i n  terms of  probabilities or information. I n  55  we showed the relevance 
o f  explicativity for a choice between hypotheses. In  56  we saw that if explicativ- 
i t y  is used in  experimental design it reduces in effect to  expected weight o f  evi- 
dence or to  rate of  transmission o f  information. In  57  an informal quantification 
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o f  predicitivity was suggested. In  3 8  i t  is pointed out  that a distinction between 
background information and "collateral" information is necessary for formaliz- 
ing a familiar aspect o f  explanation, so that q depends on four variables (apart 
from the evidence G' that is deliberately ignored: see 53). I n  3 9  i t  is shown 
that explicativity and causal propensity can be quantitatively quite different, 
both in  common parlance and in  terms o f  the formalism. In  310 several exam- 
ples of  statistical estimation and significance testing are worked out in  terms of  
explicativity with intuitively appealing results. 

APPENDIX A. COMPLEXITY 

Although an explication of simplicity or complexity is not required for that 
of  explicativity, the latter depends on the initial probability of  a proposition H 
and this probability surely depends to some extent on the complexity of  H. For 
the complexity of  the conjunction H & K of  two propositions that are entirely 
independent is greater than the complexity o f  either of  them separately, in any 
one's book, and is reasonably assumed to be the sum of the two complexities. 
If the complexity of  H could be defined in terms o f  P(H) alone then it would 
have to be -logP(H) as suggested in #599. But the two propositions 0 = 0 and 
0 = 1 are about equally simple in  my present judgment, though their probabili- 
ties are poles apart. So the complexity o f  H cannot be defined in terms of  P(H) 
alone. Fortunately this error in  #599 did not undermine much else in that work. 
The error was admitted in  #876, and on pp. 15456, where attempts were made 
to improve the definition. I t  was proposed that the complexity o f  a proposition 
should be defined as the minimum value o f  -logp where p = P(S) is the proba- 
bil ity o f  some statement S of the proposition regarded as a linguistic string and 
the minimum is taken over all ways of expressing the proposition as a statement. 
Moreover, the language used must be one that is economical for talking about 
the topic in  question. 

A valid objection was raised against this definition by Peter Suzman, as men- 
tioned in Good (1976b). Suzman asked whether the proposition that all cater- 
pillars have chromosomes is more complex than that all dogs have chromosomes. 
My reply was t o  concede that these propositions are o f  (nearly?) equal com- 
plexity. Nor is it sufficient to  modify the proposed definition o f  complexity, 
by definingp(S) as the probability o f  thesyntactic structure of  S, nor by making 
the definition depend only on the number o f  dimensionless parameters in  a law. 
For a parameter equal to  5.4603 is more complex than one that is equal to  2. 
Perhaps one cannot do much better than to define the complexity o f  a propo- 
sition as equal t o  the weighted length of the shortest way of  expressing it, 
measured in words and symbols, where different weights should be assigned to 
different categories o f  words such as parts of  speech. Perhaps the weights should 
be minus the logarithms of  the frequencies o f  these categories o f  words (instead 
o f  using the frequencies o f  the individual words and symbols as such). This 
would reduce the problem to  the specification o f  the categories. 



A somewhat different ideal measure of the complexity of a scientific theory 
i s  the number of independent axioms in i t  (see, for example, Margenau, 1949), 
and I believe this i s  a useful rule of thumb. But i t  does not allow for the relative 
complexities of the axioms. 

In practice, the beauty of a theory, rather than i t s  simplicity, might be more 
important when estimating initial probabilities: see the quotations at the end of 
the main text. To fall back on beauty as a criterion is  presumably to admit that 
the left hemispheres of the brains of philosophers of science have not yet formal- 
ized the intuitive activities of the right hemispheres. 

Measurements of complexity or ugliness might help us to judge prior proba- 
bilities, but, i f  the prior probabilities could be adequately judged, the crutches 
of simplicity and beauty could be discarded. These crutches were not much used 
in the main text because our aim was to express explicativity in terms of proba- 
bility. 

APPENDIX B. THE FORM OF THE FUNCTION q(E:H) 

. . . [ A  proof of (8) was given in this appendix.] 

References 
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Proof By A1 0 and A22, we may I 

itiesp] > q l ,  p, >q2. Let 

$ ( t ,  17, x )  =.Q(l - eE, 1 - 
PI = exp t l  

/e:~eUf 
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any positive constant, k, the resistance must be equal to R*(x, k q  T/k) .  Since 
of k it must be of the form of R*(x, a)). 

Now, by a continuity argument, we may generalize T9 to continuous chains, 
eq, x(1 - eE ) + (1  - x ) ( l  - eq)), and hence deduce that, for any positive T and U we have 
,q1 = exp171, etc. 

R*(x, aT) + R * ( l ,  aU) = R*(x, aT + aU). 
Then 

$(.El + t 2 , 1 7 1  + 1 7 2 , ~ )  = $(.El, 171, x )  + $(t2,172, x). 

1 On putting 17] = q2 = 0, and provisionally regarding x as a constant, we get a well 
known functional equation whose only continuous solution is  easily seen to be 

I of the form 

where u ( x )  i s  a function of x only. (The only other solutions are in fact non- 
measurable: see Hamel, 1905, or Hardy et a/., 1934, p. 96.) Likewise $(O, Q x )  

I 
I = 17-  w (x ) ,  where w(x )  is  a function of x only. Therefore 

Therefore 

T I  3 now follows from A5 combined with the equation 

Q.E.D. 

A23. Consider a radioactive particle in a certain state, which I shall call the 
"white" state. In any time interval, t ,  i t  has probability eCa o f  remaining in the 
white state throughout the interval i f  i t  starts the interval in that state. I f  i t  does 
not remain in the white state, then i t  pioceeds to another state called here the 
"black" state, from which there is no return. Now let F be the event that the 
particle is In the wh@e state at the start of  an interval o f  duration T and let E be 
the event that i t  is in the white state at the end o f  this interval. Then we assume 
that, i f  F and E boih occurred, x(E:F) does not depend on the unit In terms o f  
whlch time is measured. 

A24. I f  F .  E implies G, and F + G + E is a chain, then this chain is o f  the 
same strength as F + E. 

T14. Rb,  0, r )  = v(r/p) - k . logp, 
where v(x)  1s a non-negative analytic function o f  x, and k is a positlve constant. 

Proof; Consider the radioactive particle described in A23. Let P(F) = x. The 
degree t o  which F caused E i s  the limit of the strengths of finite chains obtained 
by breaking up the time interval (0,T) into a "Riemann dissection" (see A9). 
Since g is a continuous function (A8) the resistances of these finite chains must 
also tend t o  a limit, which we may call the causal resistance from F to  E. This 
must be some function of x, a, and T; say R*(x, a, T). By A23 we see that for 

By giving x the value 1 and subtracting from the equation with arbitrary x, we 
see that R*(x, aT) is  of the form 

I where, identically, 

so that R*(aT) is  of the form 

R*(aT) = k aT. 

I Now, by repeated use of A24, we see that 

I where p = e-aT. Thus 

Rb,  0, r )  = v(r/p) - k . logp. 
Q. E. D. 

where the base o f  the logarithms may be taken as e. Q(p, q, r )  is mathematically 
independent o f  r, and may be abbreviated to Q(p,q). I t  can be written in other 
ways: 

P (E IF .  G )  
= log 

o(FE. G )  Q(E:FIG) = log - 
P ( E I F  . G )  O W )  

the weight o f  evidence against F i f  E does not happen. More precisely, Q is 
uniquely determined only up to a continuous analytic increasing transformation. 
Among all the explicata there is just one apart from a scale factor (choice o f  
unit), for which theorems T9 and T I  1 are true. We lose no real generality, and 
we gain simplicity, by choosing this explicatum. 

Proof By T I  3, T14, and A7, we have the identity 

f(v(r/p) - log P )  = - u(r lp)  . lod l  - P) .  

Let v(x)  = y ,  4 o g p  = z, log fCy + z )  = p(y +I) .  Then p(y + z )  is  of the form 

PCV +4 = P I  CV) + p2 (4. 
If v(x)  i s  not a constant, we can differentiate and deduce that p(y) i s  a linear 
function of y, from which we can soon derive that log(1 - p )  i s  a power of p. 
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Since this is false i t  follows that v(x) is a constant, and hence also that u(x) is a 
constant. 

The theorem now follows from the remark that the choice o f  the base o f  the 
logarithms is equivalent merely to the choice of units o f  measurement o f  strength 
and resistance. We may call the units "natural," "binary," or "decimal," accord- 
ing as the base is e, 2, or 10. In this paper I shall use natural units. Possible 
names would be "natural causats" and "natural tasuacs." 

Note that the explicatum for Q was by no means obvious in advance, nor was 
it obvious that all the desiderata could simultaneously be satisfied. 

I t  i s  interesting to note that, if, contrary to most of the discussion, we assume 
E to be earlier than F, and i f  the universe has the "Markov" property, defined 
below, then the tendency of F to cause E i s  zero. This result may very well have 
been taken as a desideratum, but was in fact noticed only after the explicatum 
was obtained. By the Markov property i s  meant here that, for prediction, a com- 
plete knowledge of the immediate past makes the remote past irrelevant. 

T1 6. The relationship between R and S is symmetrical, namely 

or equivalently, 

R = -Iog(l - e- '), s = -Iog(l - e- R ) .  

This is an immediate corollary of A7 and T I  5. 
Thus the function f i s  i t s  own inverse, g. I t  is tempting to permit negative and 

imaginary values because some of the formalism is faintly reminiscent o f  Feyn- 
man's formulation of quantum mechanics, but I shall not pursue this matter 
here. 

T1 7. If a chain consists o f  n links whose p's and q's are (pi, qi), where pi 2 qi, 
then its causal strength is 

This follows from T16:and T9. 
Before reading the proofs in the present section the reader will probably 

prefer to read the next two sections, in which some examples are given. 

6. TWO-STATE MARKOV PROCESSES 

The radioactive process described in Axiom 23 can be slightly generalized by 
permitting return from the black to the white state, with a parameter 0 cor- 
responding to  the a of the white-to-black transition. We have a two-state Markov 
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process with continuous time. The parameters a and 0 are of course both non- 
negative. In the special case of the radioactive particle we have 0 = 0. 

It can be shown that 

Q(E:F) = log[(a + @ - ( a  +P)T)/(a - ae-(Q +P)T)] .  

I f  the particle ever entered the black state during the time interval, T, the 
chain would be cut and the degree of causality would be zero. Assuming that 
this does not happen, we can calculate x(E:F) by applying a Riemann dissection 
to the interval, so as to obtain a causal chain consisting o f  a finite number o f  
events, and then proceed to the limit as the fineness of the dissection tends to 
zero. By applying T I7  and A9 we find that 

= -log( 1 - e - a ' a  

1 which is mathematically independent o f  0. 
For large T; both Q and x are exponentially small, but Q i s  smaller than x 

L t Ibv5 and i s  much smaller i f  0 is  large. This i s  reasonable since, i f  0 i s  large, the initial 

state makes little difference to the probability of being in the white state at the 
end of the interval. 

Note that x is the degree to which being in the white state rather than in the 
black state at the end o f  the interval was caused by being in the white state 
rather than in the black state at the start of the interval. A similar explicit 
description can of course be given for Q. 

A well known pitfall in statistics i s  to imagine that a statistically significant 
correlation or association i s  necessarily indicative of a causal relationship. The 
seeing o f  lightning is not usually a cause o f  the hearing o f  thunder, though the 
two are strongly associated. Such associations and correlations are often de- 
scribed as "spurious," a better description than "illusory." They may also be 
partially spurious, and the explicata for Q and x should help with the analysis 
of such things. Smoke and dust might be a strong cause o f  lung cancer, but 
smoking only a weak cause. Even so, the correlation between smoking and lung 
cancer may be high i f  there is more smoking per head in smoky districts. I 
mention this only as an example, and have not made a special study of this 
problem. 

Note that 

Q(E: F.G/F.G) = Q(E:GIF) + Q(E:FIG), 

so that the tendency to cause can be split into components, somewhat in the 
manner o f  an analysis o f  variance. For example, the tendency for lung cancer 
to  be caused by smoking and living in a smoky district, as against not smoking 
and living in a clean district, is equal to the tendency through living in a smoky 
district, given no smoking, plus the tendency through smoking, given that the 


