Consider the following three formulas of Q [where, as always, \(p \land q \equiv \neg (p \lor \neg q) \), and \(\lor p \equiv \neg \land \neg p \)]:

\[
q \equiv \land x' \land x'' \land x'''[(F**'x'x'' \land F**'x''x''') \lor F**'x'x''']
\]

- In more standard notation: \(q \equiv (\forall x)(\forall y)(\forall z)[(Rxy \land Ryz) \lor Rxz] \).

\[
r \equiv \land x'F**'x'x''
\]

- In more standard notation: \(r \equiv (\exists x)Rxx \).

Informally, \(p \) asserts that the 2-place relation \(F**' (R) \) is transitive, \(q \) asserts that \(F**' (R) \) is serial, and \(r \) asserts that there is some object that bears the relation \(F**' (R) \) to itself. Now, consider the following complex statement, constructed out of \(p, q \), and \(r \):

\[A \equiv (p \land q) \lor r \]

Claim \(A \) asserts that if \(F**' (R) \) is transitive and serial, then some object bears \(F**' (R) \) to itself.

Fact. \(A \) is \(k \)-valid for all (finite) \(k \), but \(A \) is not valid \([\not\models_Q A] \).

Proof. First, we will show (informally) that \(A \) is \(k \)-valid, for all \(k \). Our (informal) argument will involve showing that \(A \) is true on all 1-element interpretations, and all 2-element interpretations, and ..., and all \(k \)-element interpretations, for all \(k \). We will do this by arguing (informally) that we cannot make \(A \) false on any \(k \)-element interpretation. And, since \(A \) is a closed formula, it must either be true or false on each interpretation of \(Q \). Thus, it will follow that \(A \) is true on all \(k \)-element interpretations of \(Q \), for all \(k \).

Let’s think about 1-element interpretations \(I_1 \) first. In order to make \(A \) false on any interpretation \(I \), we would need to make \(p \) and \(q \) both true, and \(r \) false on \(I \) (these are just the falsity-conditions for \(\lor \)). And, to make \(r \) false on a 1-element interpretation \(I_1 \), we need to ensure that its single element \(\alpha \) is such that \(\neg R\alpha\alpha \). But, we also need to ensure that \(q \) is true on \(I_1 \). Thus, we need there to be some element \(\beta \) of \(I_1 \) such that \(R\alpha\beta \) is true on \(I_1 \). Because there is only one element in the interpretation, we cannot make \(q \) true while \(r \) is false. This shows (already, and without even considering that \(p \) must also be true on \(I_1 \) in order to make \(A \) false on \(I_1 \)) that there can be no 1-element interpretation \(I_1 \) on which \(A \) is false. In other words, we have just shown that the formula \(A \) is 1-valid (indeed, we’ve even shown that \(q \lor r \) is 1-valid).

Next, we need to argue that we cannot make \(A \) false on a 2-element interpretation \(I_2 \) either. So far, we have two elements \(\alpha \) and \(\beta \), with the following structure (arrows represent \(R \)-relations):

```
\alpha \rightarrow \beta
```

Now, because we need \(r \) to remain false on \(I_2 \), we must have \(\neg R\beta\beta \) on \(I_2 \). And, because we need \(q \) to remain true on \(I_2 \), we need there to be some \(y \) such that \(R\beta y \) is true on \(I_2 \). The only way to do this (without adding yet another element to our interpretation \(I_2 \)) is to try to make \(R\beta\alpha \) true on \(I_2 \), which would yield the following (symmetric) structure:

```
\alpha \rightarrow \beta
```

\[\alpha \rightarrow \beta \]
Transitivity of R and α, β entails:

![Diagram showing transitivity](image)

To see this, just look at the instance of p, where $x' = \alpha$, $x'' = \beta$, and $x''' = \alpha$ (and then the instance of p, where $x' = \beta$, $x'' = \alpha$, and $x''' = \beta$). Therefore, it is impossible to make A false on an interpretation containing only two elements I_2. That is, we have just shown that A is 2-valid.

Perhaps we can make A false on an interpretation with three elements I_3? We have just seen that in order to make p true, while q is true and r is false, we need to add a third object y to I_2, which would yield an interpretation I_3 with the following relational structure:

![Diagram showing additional object](image)

Again, in order to make r false on I_3, we must have $\neg R_{yy}$ on I_3, and in order to make q true on I_3, there must be some object δ such that $R_{y\delta}$. We could try to satisfy this constraint by forcing either $R_{y\alpha}$ or $R_{y\beta}$ on I_3. But, both of these choices will end up with the same sort of inconsistency with p and $\neg r$ that we just saw in the previous ($k = 2$) case, with the introduction of object β. That is, if we enforce $R_{y\alpha}$, then p will entail $R_{\alpha\alpha}$ and R_{yy} (hence r will be true), and if we enforce $R_{y\beta}$, then p will entail $R_{\beta\beta}$ and R_{yy} (and r will be true). And, this frustrating story will repeat itself, no matter how large the (finite) domain of I_k is allowed to be — A cannot be false on any interpretation of (finite) size k. \(\vdash A \text{ is } k\text{-valid, for all } k\).

The second thing we need to demonstrate is that A is not valid [i.e., $\not\models \alpha \ A$]. Remember, just because all finite interpretations have a certain property, it doesn’t follow that all infinite interpretations must also have that property (just think about the property of being finite!). So, just because A is true on all finite interpretations (as the informal argument above shows), it doesn’t follow that A is true on all infinite interpretations as well. And, in fact, A is false on some infinite interpretations. Let I_∞ be an interpretation of Q in which $D = \mathbb{N}$, and F^{**} gets assigned the relation $R_{xy} \equiv x < y$ by I_∞. Here’s a “picture” of I_∞:

![Diagram showing infinite structure](image)

A is false on I_∞. To demonstrate this, we need to show that p and q are both true on I_∞, but r is false on I_∞. It is easy to see that both p and q are true on I_∞, since the less-than relation is clearly both transitive and serial on the natural numbers. And, it is also clear that r is false on I_∞, since no natural number is less than itself. This completes the (informal) proof that A is k-valid, for all (finite) k, but A is invalid.

Addendum: Can you give more rigorous proofs of these two claims about A? Presumably, the first claim would proceed via induction on the size k of candidate interpretations I_k. We have already established the basis ($k = 1$) case, above. The inductive hypothesis would be that A is false on all interpretations I_j of size $1 \leq j < k$. And, from this assumption, the goal would be to prove that A is false on interpretations I_k of size equal to k. You can see how that argument is going to run, just by thinking about how we were led into frustrating inconsistencies above, when we tried to make A true by adding one element to an interpretation I_j on which A was false. For the second claim, can this one be proved (in an illuminating way) by induction? Or does it involve properties so basic to the less-than relation (over natural numbers) that it would be difficult to see how an illuminating “inductive proof” would go?