A More Straightforward Proof of Metatheorem 40.12

Michael Caie

03/20/07

40.12: Let I be an arbitrary interpretation with domain D. Let A be an arbitrary wff. Let s and s' be two sequences such that, for each free variable v in A, if v is the kth variable in the fixed enumeration of the variables of Q, then s and s' have the same member of D for their kth terms. Then s satisfies A iff s' does.

Proof. By induction on the complexity of *A*, *i.e.*, on the number *n* of connectives and quantifiers in *A*.

Basis Step: n = 0. There are two possible cases.

1. *A* is a propositional symbol *p*.

This is trivial. Given any interpretation I and a propositional symbol p either every sequence satisfies p or every sequence fails to satisfy p.

2. *A* is of the form $Ft_1, \ldots t_n$.

We know that *s* satisfies *A* iff $\langle t_1 \star s, ..., t_n \star s \rangle \in I(F)$ and *s'* satisfies *A* iff $\langle t_1 \star s', ..., t_n \star s' \rangle \in I(F)$. We prove that for each t_i in *A*, that $t_i \star s = t_i \star s'$, and therefore that *s* satisfies *A* iff *s'* satisfies *A*. The proof proceeds by induction on the number *m* of function symbols in t_i .

Basis Step: m = 0. There are two sub-cases.

(i) t_i is a constant. In this case, $t_i \star s = t_i \star s' = I(t_i)$.

(ii) t_i is a variable v_k . In this case, since A is *atomic*, t_i is free in A. By the hypothesis of the theorem, the kth term of s = the kth term of s'. Thus, $t_i \star s = t_i \star s'$.

Inductive Step:

(iii) t_i is $ft_{j_1}, \ldots, t_{j_m}$, which contains a *total* of m > 0 function symbols (including the leading f) Let I(f) = f. Then, $t_i \star s = ft_{j_1} \star s, \ldots, t_{j_m} \star s$, and $t_i \star s' = ft_{j_1} \star s', \ldots, t_{j_m} \star s'$. By the inductive hypothesis, we know that for all i such that $1 \le i \le m$, $t_{j_i} \star s = t_{j_i} \star s'$. This is because the t_{j_i} have < m function symbols in them (t_i has m function symbols, including the leading f). Thus $t_i \star s = t_i \star s'$, since identical functions have the same values given identical arguments.

Inductive Step: There are three cases.

1. $A = \sim B$. Trivial. By the inductive hypothesis, *s* satisfies *B* iff *s'* satisfies *B*. Therefore, *s* does not satisfy *B* iff *s'* does not satisfy *B*. So, *s* satisfies *A* iff *s'* satisfies *A*.

2. $A = B \supset C$. Once again trivial. Simple exercise.

3. $A = \bigwedge_{v_p} B$. Assume that *s* satisfies *A*. Then, $s(d_i/p)$ satisfies *B* for each d_i in *D*. We will show that $s'(d_i/p)$ satisfies *B* for each d_i in *D*. To show this, we first show that for each d_i , $s(d_i/p)$ and $s'(d_i/p)$ have the same *k*th term for each free variable v_k in *B*. First note that every variable that is free in *A* is also free in *B* (*B* has one fewer quantifier in it than *A*, but is otherwise identical to *A*). By the hypothesis of the theorem, for each free v_j in *A*, *s* and *s'* have the same *j*th term. For each such v_j , *s* and $s(d_i/p)$ have the same *j*th term, as do *s'* and $s'(d_i/p)$, (since *s* and $s(d_i/p)$ differ *at most* in the *p*th term and for all *j* such that v_j is free in *A*, $j \neq p$, since v_p is not free in *A*). If, then, v_k is free in *A*, $s(d_i/p)$ and $s'(d_i/p)$ have the same *k*th term. The only other variable that could be free in *B* is v_p . Since the *p*th term of $s(d_i/p)$ and $s'(d_i/p)$ have the same *k*th term. We can, therefore, employ the inductive hypothesis. We have, then, that for each d_i , $s(d_i/p)$ satisfies *B*. It follows, then, that for each d_i , $s'(d_i/p)$ satisfies *B*. Therefore, *s'* satisfies *A*. The other direction proceeds in exactly the same manner. It is left as a simple exercise.