Take-Home Final

Philosophy 12A May 6, 2010

The take-home part of the final exam consists of the four problems on this handout (weighted equally). The take-home final is **due at the in-class the final** — **3pm Thursday May 13, 2010** (A1 Hearst Annex).

Please hand in only one exam paper per group.

1 Problem #1

Consider the following LMPL interpretation:

		F	G	H	Ι	_
(\mathcal{I}_1)	α	_	+	+	+	-
	β	+	_	+	_	

Determine the truth-values of the following three LMPL sentences on interpretation \mathcal{I}_1 , and (for each of the three sentences) *explain why* they have those truth-values on \mathcal{I}_1 .

- 1. $(\forall x)(\forall y)[(Fx \rightarrow (\exists z)Gz) \leftrightarrow (Hx \lor Iy)]$
- 2. $(\exists x)(\exists y)[(Hx \leftrightarrow (\forall z)Fz) \& (Gy \rightarrow \sim Ix)]$
- 3. $(\forall x)[(Gx \leftrightarrow (\forall y)Fy) \rightarrow (\forall w)(\exists z)(Fx \leftrightarrow (Hw \lor Iz))]$

2 Problem #2

Show that the following LMPL argument is *in*valid:

 $(\forall x)(\forall y)(Fx \to Gy)$ (A) $(\forall x)Gx \to [(\exists y)(Hy \& Iy) \& (\exists z)(Hz \& \sim Iz)]$ $\therefore (\forall x)(Fx \to Hx)$

That is: (*i*) describe an LMPL interpretation \mathcal{I} which makes both premises of \mathcal{A} true, but the conclusion of \mathcal{A} false, *and* (*ii*) *explain why* \mathcal{I} makes both premises of \mathcal{A} true, but the conclusion of \mathcal{A} false.

3 Problem #3

Give a natural deduction proof of the following LMPL sequent. You may use SI and TI (but, you don't have to).

 $(\forall x)(\exists y)(Fx \rightarrow Gy) \vdash (\exists x)(\forall y)(Fy \rightarrow Gx)$

NOTE: This is problem #10 on page 207 of the text (so, it's in my MacLogic problem files).

4 Problem #4

Give a natural deduction proof of the following LMPL sequent. You may use SI and TI (but, you don't have to).

$$(\exists x)(Fx \leftrightarrow Gx), (\forall x)[Gx \rightarrow (Hx \rightarrow Jx)] \vdash (\exists x)Jx \lor [(\forall x)Fx \rightarrow (\exists x)(Gx \& \sim Hx)]$$

NOTE: This is problem #10 on page 203 of the text (so, it's in my MacLogic problem files).

Extra Credit (10 Points Worth)

Give a natural deduction proof of the following LMPL theorem. You may use SI and TI (but, you don't have to). *Extra Credit will only be awarded for correct (or, very close to correct) proofs* — no extra-credit will be awarded for mere effort.

$$\vdash (\exists x)(\forall y)(\forall z)[(Fy \rightarrow Gz) \rightarrow (Fx \rightarrow Gx)]$$

NOTE: This is problem #9 on page 207 of the text (so, it's in my MacLogic problem files).