Homework \#5 Solutions
 Philosophy 12A
 May 10, 2010

Page 158 \#6. 'If Fermat was a French mathematician, then he was famous.' Our domain of discourse (\mathcal{D}), predicates $(R$, M, F), and individual constant (i.e., the proper name of the individual person Fermat) (f) are:

$$
\begin{array}{ll}
M_{-}:{ }_{-} \text {is a mathematician } & R_{-}: \text {_ i }^{\text {is French }} \\
F_{-}: \text {_ }_{-} \text {is famous } & f: \text { Fermat } \\
& \mathcal{D}: \text { people }
\end{array}
$$

In "Loglish," we have 'If $R f$ and $M f$, then $F f$ '. In LMPL, this becomes: ' $(R f \& M f) \rightarrow F f$ '.

Page 158 \#16. 'If no wealthy economist exists then no famous mathematician exists.' Our domain of discourse (\mathcal{D}) and predicates (W, E, F, M) are:

$$
\begin{array}{lc}
W_{-}:_{-} \text {is wealthy } & E_{-}:{ }_{-} \text {is an economist } \\
F_{-}:{ }_{-} \text {is famous } & M_{-}: \text {in }^{2} \text { is mathematician } \\
& \mathcal{D}: \text { people }
\end{array}
$$

In "Loglish," we have 'If there does not exist an x such that both $W x$ and $E x$, then there does not exist an x such that both $F x$ and $M x$ '. In LMPL, this becomes the following:
$' \sim(\exists x)(W x \& E x) \rightarrow \sim(\exists x)(F x \& M x)$ '.

Page 165 \#5. 'If it rains, only the killjoys will be happy.' Our domain of discourse (\mathcal{D}), predicates (K, H), and atomic sentence letter (R) are as follows:

$$
\begin{array}{ll}
K_{-}: ~_{~} \text { is a killjoy } & R: \text { 'It rains.' } \\
H_{-}: \text {is happy } & \mathcal{D}: \text { people }
\end{array}
$$

In "Loglish," we have 'If R, then only the K 's will be H '. Or, in other words, 'If R, then all H 's will be (the) K 's'. In LMPL, this is: ' $R \rightarrow(\forall x)(H x \rightarrow K x)$ '. Here, ' $R \rightarrow(\forall x)(H x \leftrightarrow K x)$ ' is also defensible, since the English sentence says 'the killjoys'.

Page 165 \#15. 'No voter will be satisfied unless some politician who is elected is incorrupt.' Lexicon:

$$
\begin{array}{ll}
E_{-}:{ }_{-} \text {is elected } & P_{-}:{ }_{-} \text {is a politician } \\
C_{-}: \text {is corrupt } & V_{-}: \text {is a voter } \\
S_{-}:{ }_{-} \text {is satisfied } & \mathcal{D}: \text { people }
\end{array}
$$

This sentence says: ${ }^{〔} p$ unless q^{\prime}, where p says 'There does not exist an x such that $V x$ and $S x$ ', and q says 'There exists an x such that $E x$ and $P x$ and not $C x$ '. In LMPL, p is ' $\sim(\exists x)(V x \& S x)$ ', and q is ' $(\exists x)[(P x \& E x) \& \sim C x]$ '. Recall, ${ }^{\ulcorner } p$ unless q^{\top} is symbolized either as ${ }^{\ulcorner } \sim q \rightarrow p^{\top}(p$. 23) or as ${ }^{\ulcorner } p \vee q^{\top}(p .57)$. So, both:

$$
' \sim(\exists x)[(P x \& E x) \& \sim C x] \rightarrow \sim(\exists x)(V x \& S x) \prime
$$

and

$$
' \sim(\exists x)(V x \& S x) \vee(\exists x)[(P x \& E x) \& \sim C x]
$$

are acceptable.

Page 179 \#5.
The existential claim ' $(\exists x)(I x \rightarrow H x)$ ' is true on \mathcal{I}, because its instance ' $I a \rightarrow H a$ ' is true on \mathcal{I}, since $\alpha \notin \operatorname{Ext}(I)$.

Page 179 \#9. The universal claim ' $(\forall x)(\exists y)[F x \rightarrow(H x \vee$ $J y)]$ ' is true on \mathcal{I}, since all three of its instances are true on \mathcal{I} : (i) the existential claim ' $(\exists y)[F a \rightarrow(H a \vee J y)]$ ' is true on \mathcal{I} because its instance ' $F a \rightarrow(H a \vee J a)$ ' is true on \mathcal{I}, since $\alpha \in \operatorname{Ext}(H)$. (ii) ' $(\exists y)[F b \rightarrow(H b \vee J y)]$ ' is true on \mathcal{I} because its instance ' $F b \rightarrow(H b \vee J a)$ ' is true on \mathcal{I}, since $\beta \in \operatorname{Ext}(H)$. Finally, (iii) ' $(\exists y)[F c \rightarrow(H c \vee J y)]$ ' is true on \mathcal{I} because its instance ' $F c \rightarrow(H c \vee J a)$ ' is true on \mathcal{I}, since $\alpha \in \operatorname{Ext}(J)$.

Page 179 \#12.

$‘(\forall x)(\forall y)[(F x \leftrightarrow G y) \leftrightarrow(\exists w)(\exists z)(H w \& J z)]$ ' is false on \mathcal{I}, since its instance $(i) ‘(\forall y)[(F a \leftrightarrow G y) \leftrightarrow(\exists w)(\exists z)(H w \&$ $J z)]^{\prime}$ is false on \mathcal{I}. Instance (i) is false on \mathcal{I}, because its instance $(i .1)$ ' $(F a \leftrightarrow G a) \leftrightarrow(\exists w)(\exists z)(H w \& J z)$ ' is false on \mathcal{I}. The biconditional (i.1) is false, because its left-side ' $F a \leftrightarrow G a$ ' is false [since $\alpha \in \operatorname{Ext}(F)$ but $\alpha \notin \operatorname{Ext}(G)$], but its right-side (i.1r) ' $(\exists w)(\exists z)(H w \& J z)$ ' is true. (i.1r) is true on \mathcal{I}, because its instance (i.1r.1) ' $(\exists z)(H a \& J z)$ ' is true on \mathcal{I}. Finally, (i.1r.1) is true on \mathcal{I}, because its instance (i.1r.1.1) ' $\mathrm{Ha} \& J a$ ' is true on \mathcal{I} [since both $\alpha \in \operatorname{Ext}(H)$ and $\alpha \in \operatorname{Ext}(J)$].

Page 184 \#6.
Interpretation \mathcal{I}_{1} establishes that:

$$
(\exists x)(F x \leftrightarrow G x) \nLeftarrow(\exists x)(F x \vee G x)
$$

$\left(I_{1}\right)$

$$
\begin{array}{c|cc}
& F & G \\
\hline \alpha & - & -
\end{array}[\mathcal{D}=\{\alpha\}, \operatorname{Ext}(F)=\varnothing=\operatorname{Ext}(G)]
$$

On \mathcal{I}_{1}, the premise ' $(\exists x)(F x \leftrightarrow G X)$ ' is true, because its instance ' $F a \leftrightarrow G a$ ' is true, since $\alpha \notin \operatorname{Ext}(F)$ and $\alpha \notin \operatorname{Ext}(G)$. But, on \mathcal{I}_{1}, the conclusion ' $(\exists x)(F x \vee G X)$ ' is false, because its instance ' $F a \vee G a$ ' is false, since $\alpha \notin \operatorname{Ext}(F)$ and $\alpha \notin \operatorname{Ext}(G)$.

Page 184 \#8.
Interpretation \mathcal{I}_{2} establishes that:

$$
(\forall x) F x \rightarrow(\exists x) G x \nRightarrow(\forall x)(F x \rightarrow G x)
$$

$\left(I_{2}\right)$

	F	G
α	+	-
β	-	-

$$
[\mathcal{D}=\{\alpha, \beta\}, \operatorname{Ext}(F)=\{\alpha\}, \operatorname{Ext}(G)=\varnothing]
$$

On I_{2}, the premise ' $(\forall x) F x \rightarrow(\exists x) G x$ ' is true, because its antecedent ' $(\forall x) F x$ ' is false, since instance ' $F b$ ' of the antecedent is false $[\beta \notin \operatorname{Ext}(F)]$. But, on \mathcal{I}_{2}, the conclusion ' $(\forall x)(F x \rightarrow G x)$ ' is false, because its instance ' $F a \rightarrow G a$ ' is false, since $\alpha \in \operatorname{Ext}(F)$ but $\alpha \notin \operatorname{Ext}(G)$.

Page 184 \#21.
Interpretation \mathcal{I}_{2} also establishes that:

$$
(\exists x)[F x \rightarrow(\forall y) G y] \nLeftarrow(\exists x) F x \rightarrow(\forall y) G y
$$

On \mathcal{I}_{2}, the premise ' $(\exists x)[F x \rightarrow(\forall y) G y]$ ' is true, because its instance ' $F b \rightarrow(\forall y) G y$ ' is true, since $\beta \notin \operatorname{Ext}(F)$. But, on I_{2}, the conclusion ' $(\exists x) F x \rightarrow(\forall y) G y$ ' is false, because its antecedent ' $(\exists x) F x$ ' is true $[\alpha \in \operatorname{Ext}(F)]$; but its consequent ' $(\forall y) G y$ ' is false [in fact, neither $\alpha \in \operatorname{Ext}(G)$ nor $\beta \in \operatorname{Ext}(G)]$.

