Homework #5 Solutions Philosophy 12A May 10, 2010

Page 158 #6. 'If Fermat was a French mathematician, then he was famous.' Our domain of discourse (D), predicates (R, M, F), and individual constant (*i.e.*, the proper name of the individual person Fermat) (f) are:

M_{-} : _ is a mathematician	R_{-} : _ is French
F_{-} : _ is famous	f : Fermat
\mathcal{D} : people	

In "Loglish," we have 'If Rf and Mf, then Ff'. In LMPL, this becomes: ' $(Rf \& Mf) \to Ff$ '.

Page 158 #16. 'If no wealthy economist exists then no famous mathematician exists.' Our domain of discourse (D) and predicates (W, E, F, M) are:

W_{-} : _ is wealthy	E_{-} : _ is an economist	
F_{-} : _ is famous	M_{-} : _ is a mathematician	
\mathcal{D} : people		

In "Loglish," we have 'If there does not exist an x such that both Wx and Ex, then there does not exist an x such that both Fx and Mx'. In LMPL, this becomes the following: ' $(\exists x)(Wx \& Ex) \rightarrow (\exists x)(Fx \& Mx)$ '.

Page 165 #5. 'If it rains, only the killjoys will be happy.' Our domain of discourse (D), predicates (K, H), and atomic sentence letter (R) are as follows:

<i>K</i> _ : _ is a killjoy	R : 'It rains.'
H_{-} : _ is happy	\mathcal{D} : people

In "Loglish," we have 'If *R*, then only the *K*'s will be *H*'. Or, in other words, 'If *R*, then all *H*'s will be (the) *K*'s'. In LMPL, this is: ' $R \rightarrow (\forall x)(Hx \rightarrow Kx)$ '. Here, ' $R \rightarrow (\forall x)(Hx \leftrightarrow Kx)$ ' is also defensible, since the English sentence says '*the* killjoys'.

Page 165 #15. 'No voter will be satisfied unless some politician who is elected is incorrupt.' Lexicon:

E_{-} : _ is elected	P_{-} : _ is a politician
C_{-} : _ is corrupt	V_{-} : _ is a voter
S_{-} : _ is satisfied	$\mathcal D$: people

This sentence says: ${}^{r}p$ unless q^{1} , where p says 'There does not exist an x such that Vx and Sx', and q says 'There exists an x such that Ex and Px and not Cx'. In LMPL, p is ' ${}^{\sim}(\exists x)(Vx \& Sx)$ ', and q is ' $(\exists x)[(Px \& Ex) \& {}^{\sim}Cx]$ '. Recall, ${}^{r}p$ unless q^{1} is symbolized *either* as ${}^{r}{}^{\sim}q \rightarrow p^{1}(p.23)$ *or* as ${}^{r}p \lor q^{1}(p.57)$. So, both:

$$(\exists x) [(Px \& Ex) \& \sim Cx] \rightarrow \sim (\exists x) (Vx \& Sx)'$$

and

$$\neg (\exists x)(Vx \& Sx) \lor (\exists x)[(Px \& Ex) \& \neg Cx]'$$

are acceptable.

Page 179 #5.

The existential claim $(\exists x)(Ix \rightarrow Hx)'$ is true on \mathcal{I} , because its instance $Ia \rightarrow Ha'$ is true on \mathcal{I} , since $\alpha \notin \text{Ext}(I)$.

Page 179 #9. The universal claim $(\forall x)(\exists y)[Fx \rightarrow (Hx \lor Jy)]$ ' is true on \mathcal{I} , since all three of its instances are true on \mathcal{I} : (*i*) the existential claim $(\exists y)[Fa \rightarrow (Ha \lor Jy)]$ ' is true on \mathcal{I} because its instance $(Fa \rightarrow (Ha \lor Ja))$ ' is true on \mathcal{I} , since $\alpha \in \text{Ext}(H)$. (*ii*) $(\exists y)[Fb \rightarrow (Hb \lor Jy)]$ ' is true on \mathcal{I} , since $\beta \in \text{Ext}(H)$. Finally, (*iii*) $(\exists y)[Fc \rightarrow (Hc \lor Jy)]$ ' is true on \mathcal{I} because its instance $(Fb \rightarrow (Hc \lor Ja))$ ' is true on \mathcal{I} because its instance $(Fc \rightarrow (Hc \lor Ja))$ ' is true on \mathcal{I} , since $\alpha \in \text{Ext}(J)$.

Page 179 #12.

 $(\forall x)(\forall y)[(Fx \leftrightarrow Gy) \leftrightarrow (\exists w)(\exists z)(Hw \& Jz)]'$ is false on \mathcal{I} , since its instance $(i) (\forall y)[(Fa \leftrightarrow Gy) \leftrightarrow (\exists w)(\exists z)(Hw \& Jz)]'$ is false on \mathcal{I} . Instance (i) is false on \mathcal{I} , because *its* instance $(i.1) (Fa \leftrightarrow Ga) \leftrightarrow (\exists w)(\exists z)(Hw \& Jz)'$ is false on \mathcal{I} . The biconditional (i.1) is false, because its left-side $(Fa \leftrightarrow Ga')$ is false [since $\alpha \in \text{Ext}(F)$ but $\alpha \notin \text{Ext}(G)$], but its right-side $(i.1r) (\exists w)(\exists z)(Hw \& Jz)'$ is true. (i.1r) is true on \mathcal{I} , because its instance $(i.1r.1) (\exists z)(Ha \& Jz)'$ is true on \mathcal{I} . Finally, (i.1r.1) is true on \mathcal{I} , because its instance (i.1r.1.1) (Ha & Ja') is true on \mathcal{I} [since both $\alpha \in \text{Ext}(H)$ and $\alpha \in \text{Ext}(J)$].

Page 184 #6.

Interpretation \mathcal{I}_1 establishes that:

$$(\exists x)(Fx \leftrightarrow Gx) \neq (\exists x)(Fx \lor Gx)$$
$$(\mathcal{I}_1) \qquad \frac{|F - G|}{|\alpha| - |-|-|} \qquad [\mathcal{D} = \{\alpha\}, \operatorname{Ext}(F) = \emptyset = \operatorname{Ext}(G)]$$

On \mathcal{I}_1 , the premise ' $(\exists x)(Fx \leftrightarrow Gx)$ ' is true, because its instance ' $Fa \leftrightarrow Ga$ ' is true, since $\alpha \notin \text{Ext}(F)$ and $\alpha \notin \text{Ext}(G)$. But, on \mathcal{I}_1 , the conclusion ' $(\exists x)(Fx \lor Gx)$ ' is *false*, because its instance ' $Fa \lor Ga$ ' is false, since $\alpha \notin \text{Ext}(F)$ and $\alpha \notin \text{Ext}(G)$.

Page 184 #8.

Interpretation \mathcal{I}_2 establishes that:

$$(\forall x)Fx \rightarrow (\exists x)Gx \not\models (\forall x)(Fx \rightarrow Gx)$$

$$(\mathcal{I}_2) \qquad \frac{F \quad G}{\alpha \quad + \quad -} \qquad [\mathcal{D} = \{\alpha, \beta\}, \operatorname{Ext}(F) = \{\alpha\}, \operatorname{Ext}(G) = \emptyset]$$
$$(\mathcal{I}_2) \qquad \beta \quad - \quad -$$

On \mathcal{I}_2 , the premise ' $(\forall x)Fx \rightarrow (\exists x)Gx$ ' is true, because its antecedent ' $(\forall x)Fx$ ' is false, since instance '*Fb*' of the antecedent is false [$\beta \notin \text{Ext}(F)$]. But, on \mathcal{I}_2 , the conclusion ' $(\forall x)(Fx \rightarrow Gx)$ ' is *false*, because its instance '*Fa* \rightarrow *Ga*' is false, since $\alpha \in \text{Ext}(F)$ but $\alpha \notin \text{Ext}(G)$.

Page 184 #21.

Interpretation \mathcal{I}_2 also establishes that:

$$(\exists x)[Fx \to (\forall y)Gy] \not\models (\exists x)Fx \to (\forall y)Gy$$

On \mathcal{I}_2 , the premise $(\exists x)[Fx \rightarrow (\forall y)Gy]'$ is true, because its instance $Fb \rightarrow (\forall y)Gy'$ is true, since $\beta \notin \text{Ext}(F)$. But, on \mathcal{I}_2 , the conclusion $(\exists x)Fx \rightarrow (\forall y)Gy'$ is *false*, because its antecedent $(\exists x)Fx'$ is true $[\alpha \in \text{Ext}(F)]$; but its consequent $(\forall y)Gy'$ is false [in fact, *neither* $\alpha \in \text{Ext}(G)$ *nor* $\beta \in \text{Ext}(G)$].