
Philosophy 12A Homework Assignment #5

April 8, 2010

1 LPML Symbolizations

Answer the following four (4) questions from pages 158 and 165 of the text.

1. p: 158 #6

2. p: 158 #16

3. p: 165 #5

4. p: 165 #15

2 Working with a Given LPML Interpretation

Answer the following three (3) questions from page 179 of the text.

5. #5

6. #9

7. #12

3 Constructing LPML Interpretations

Answer the following three (3) questions from page 184 of the text.

8. #6

9. #8

10. #21

I have attached pages 158, 165, 179, and 184 from the 4th printing of Modern
Logic to the end of this homework assignment.



158 Chapter 5: Predication and Quantification in English

! Exercises

Symbolize each of the following sentences using names, predicates and the
existential quantifier, as appropriate. State your dictionary and say what
domain your quantifiers are relativized to. Show at least one intermediate step
in Loglish for each example.

(1) Some mathematicians are famous.
(2) Some mathematicians are not famous.

*(3) There is no mathematician who is famous.
(4) Some Germans are famous mathematicians.
(5) Gödel was a famous German mathematician.
(6) If Fermat was a French mathematician, then he was famous.
(7) Ada Lovelace was a brilliant English mathematician but she was not famous.
(8) Some famous mathematicians are neither German nor French.
(9) New Orleans is polluted but not smoggy.

(10) Some cities are smoggy and polluted.
(11) Some polluted cities are smoggy.

*(12) Some polluted cities are smoggy and some aren’t.
(13) No smoggy city is unpolluted.
(14) No city is smoggy if it is unpolluted.

*(15) If a wealthy economist exists so does a famous mathematician.
(16) If no wealthy economist exists then no famous mathematician exists.
(17) Vampires don’t exist.
(18) Nothing is both a ghost and a vampire.
(19) There aren’t any ghosts, nor vampires either.
(20) If ghosts and vampires don’t exist then nothing can be a ghost without being a

vampire.

3  More symbolizations: the universal quantifier

The other arguments of §1, B and D, contain the quantifier ‘everyone’. In
Loglish, ‘every’ becomes ‘for every _’ and so the premise of B, ‘everyone is hap-
py’, is rendered

(1.a) For every x, x is happy

relativizing ‘for every _’ to the domain of people. In place of ‘every’ we may have
‘each’, or ‘any’, or ‘all’. To turn (1.a) into a sentence of LMPL, we need a symbol
for ‘for every_’; the symbol we use is ‘∀’, and so we obtain

(1.s) (∀x)Hx.

‘∀’ is called the universal quantifier, and a sentence like (1.s) with ‘∀’ as its
main connective is called a universal sentence.

The following two examples parallel (2.9) and (2.10) at the syntactic level:

(2) Everyone is happy and everyone is wise.



§4: The syntax of LMPL 165

! Exercises

I Translate each of the following sentences in LMPL using names, predicates
and quantifiers as appropriate. State your dictionary and the domain to which
your quantifiers are relativized. Show at least one intermediate step in Loglish
for each example.

(1) All donkeys are stubborn.
(2) Every inflationary economy is faltering. (‘I_’, ‘E_’, ‘F_’)

*(3) Only private universities are expensive. (‘P_’, ‘U_’, ‘E_’)
(4) Whales are mammals.
(5) If it rains, only the killjoys will be happy. (‘A’: it rains)
(6) It’s always the men who are overpaid.

*(7) All that glitters is not gold. (‘G_’: _ glitters; ‘O_’: _ is gold)
(8) If a woman is elected, someone will be happy.
(9) If a woman is elected, she will be happy.

(10) If Mary is elected, the directors will all resign.
(11) No corrupt politicians were elected.

*(12) None but corrupt politicians were elected.
(13) If any elected politician is corrupt, no voter will be satisfied.
(14) If an elected politician is corrupt, he will not be re-elected.
(15) No voter will be satisfied unless some politician who is elected is incorrupt.

*(16) Invariably, a wealthy logician is a textbook author.
(17) Any logician who is a textbook author is wealthy.
(18) Occasionally, a logician who is a textbook author is wealthy.
(19) Among the wealthy, the only logicians are textbook authors.
(20) Except for textbook authors, no logicians are wealthy.

II With the same symbols as in (7), (2) and (5) respectively, translate the fol-
lowing formulae into idiomatic sentences of ordinary English.

(a) (∀x)(Gx → ~Ox) (b) ~(∃x)((Fx & Ex) & ~Ix) (c) A → (∀x)(~Hx → ~Kx)

4  The syntax of LMPL

We take the same perspective on the language of monadic predicate logic as we
took on the language of sentential logic: LMPL is a language in its own right,
with its own lexicon and its own formation rules for well-formed formulae. The
lexicon includes the new categories of symbol which have been introduced in
the previous examples:

The lexicon of LMPL:

All items in the lexicon of LSL, now including ‘$’; an unlimited supply
of individual variables ‘x’, ‘y’, ‘z’, ‘x%’, ‘y%’, ‘z%’…; an unlimited supply of
individual constants ‘a’, ‘b’, ‘c’, ‘a%’, ‘b%’, ‘c%’…; an unlimited supply of
monadic predicate-letters ‘A1’, ‘B1’, ‘C1’,…,‘A1%’, ‘B1%’, ‘C1%’,…; quantifier
symbols ‘∀’ and ‘∃’.
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body of the formula. This makes the search process longer. Since (6) is existen-
tial, we can find out whether it is true or false by finding out whether or not it
has a true instance. The instances of (6) are

(6a) (∀x)(Ga & (Jx → (Ix ∨ Fx)))
(6b) (∀x)(Gb & (Jx → (Ix ∨ Fx)))
(6c) (∀x)(Gc & (Jx → (Ix ∨ Fx))).

Each of these instances is a universal sentence, and each of them in turn has
three instances. For example, the instances of (6b) are:

(6b1) Gb & (Ja → (Ia ∨ Fa))
(6b2) Gb & (Jb → (Ib ∨ Fb))
(6b3) Gb & (Jc → (Ic ∨ Fc))

Had (6) been false, therefore, we would have had to consider a total of nine
quantifier-free sentences to confirm this. Fortunately, (6) is true, and this is
shown by its instance (6a).2

! Exercise

Evaluate the numbered formulae in the displayed interpretation. Explain your
reasoning in the same way as in (1)–(6) above, accounting for the truth-values
of quantified sentences in terms of the truth-values of their instances.

F G H I J

α + – + – +

β + – + – –

γ + – – + +

(1) (Ha ∨ Hc) → Ib (2) (Ha & Hc) ∨ (Ja & Jc)
*(3) (∃x)(Fx & Gx) (4) ~(∃x)Gx
(5) (∃x)(Ix → Hx) (6) (∀x)((Hx ∨ Ix) → Fx)
(7) (∀x)((Fx & Hx) → Jx) *(8) (∀x)(Hx → (∃y)(Jx & Iy))
(9) (∀x)(∃y)(Fx → (Hx ∨ Jy)) (10) (∃x)Ix → (∀x)(Jx → Ix)

(11) (∃x)(Ix → (∀y)(Jy → Iy))
(12) (∀x)(∀y)((Fx ↔ Gy) ↔ (∃w)(∃z)(Hw & Jz))

2 The rules of this section explain the term ‘logical constant’ mentioned earlier, which is applied
both to quantifiers and to sentential connectives. Domains and extensions of predicates vary from
interpretation to interpretation, but the evaluation rules for connectives and quantifiers are constant
across all interpretations. Any expression which has a constant evaluation rule is called a logical con-
stant.



184 Chapter 6: Validity and Provability in Monadic Predicate Logic

To summarize: ‘(∃x)(∀y)(Fx → Gy)’ has two instances, (i) ‘(∀y)(Fa → Gy)’ and
(ii) ‘(∀y)(Fb → Gy)’, and it is true because (ii) is true. (ii) is true because it has
two instances, ‘Fb → Ga’ and ‘Fb → Gb’ and both are true since both have false
antecedents. On the other hand, ‘(∀x)(∃y)(Fx → Gy)’ is false. It has two instanc-
es, (iii) ‘(∃y)(Fa → Gy)’ and (iv) ‘(∃y)(Fb → Gy)’, and (iii) is false. (iii) is false
because both its instances, ‘(Fa → Ga)’ and ‘Fa → Gb’, are false, since both have
true antecedent and false consequent.

It is noticeable that all our problems of showing failure of semantic conse-
quence have been solved with small domains, whereas in Chapter 5, the
domains with respect to which our symbolizations are relativized are large:
people, places, things. But counterexamples with small domains to argument-
forms derived from symbolizations of English relativized to large domains are
not irrelevant to English arguments, for if the argument-form can be shown to
be invalid by an interpretation with a small domain, then it is shown to be
invalid, and if it is the form of an English argument, it follows that that English
argument is monadically invalid. Moreover, a counterexample with a small
domain can be ‘blown up’ into one with a large domain by a duplication process
(see Exercise II.2), so our preference for simplicity does not entail irrelevance.

! Exercises

I Show the following, with explanations:

(1) (∀x)(Fx → Gx) ! (∀x)(Gx → Fx)
(2) (∀x)(Fx ∨ Gx), (∀x)(Fx ∨ Hx) ! (∀x)(Gx ∨ Hx)
(3) (∀x)(Fx → ~Gx), (∀x)(Gx → Hx) ! (∀x)(Fx → ~Hx)

*(4) (∀x)((Fx & Gx) → Hx) ! (∀x)(Fx ∨ Gx) ∨ (∀x)(Fx ∨ Hx)
(5) (∃x)(Fx & ~Hx), (∃x)(Gx & ~Hx) ! (∃x)(Fx & Gx)
(6) (∃x)(Fx ↔ Gx) ! (∃x)(Fx ∨ Gx)
(7) (∃x)(Fx & Gx), (∀x)(Gx → Hx) ! (∀x)(Fx → Hx)
(8) (∀x)Fx → (∃x)Gx ! (∀x)(Fx → Gx)
(9) (∃x)(Fx ∨ Gx), (∀x)(Fx → ~Hx), (∃x)Hx ! (∃x)Gx

(10) (∀x)(Fx → Gx) ! ~(∀x)(Fx → ~Gx)
(11) (∃x)~Fx ! ~(∃x)Fx
(12) ~(∀x)Fx ! (∀x)~Fx

*(13) (∀x)(Fx → Gx) → (∀x)(Hx → Jx) ! (∃x)(Fx & Gx) → (∀x)(Hx → Jx)
(14) (∃x)(Fx → A), (∃x)(A → Fx) ! (∀x)(A ↔ Fx)
(15) ~(A → (∀x)Fx) ! (∀x)(A → ~Fx)
(16) (∀x)Fx ↔ A ! (∀x)(Fx ↔ A)
(17) (∀x)Fx → (∀x)Gx ! Fa → (∀x)Gx
(18) Fa → (∃x)Gx ! (∃x)Fx → (∃x)Gx
(19) (∀x)Fx ↔ (∀x)Gx ! (∃x)(Fx ↔ Gx)

*(20) (∀x)Fx → (∃y)Gy ! (∀x)(Fx → (∃y)Gy)
(21) (∃x)(Fx → (∀y)Gy) ! (∃x)Fx → (∀y)Gy
(22) ~(∃x)Fx ∨ ~(∃x)Gx ! ~(∃x)(Fx ∨ Gx)


