Part One

$A \rightarrow C$
$B \rightarrow C$

1. $A \vee B$
is a valid argument. There are no rows in which all of its premises are true and its conclusion is false:
$\therefore C$

A	B	C	$A \rightarrow C$	$B \rightarrow C$	$A \vee B$	C
T	T	T	T	T	T	T
T	T	\perp	\perp	\perp	T	\perp
T	\perp	T	T	T	T	T
T	\perp	\perp	\perp	T	T	\perp
\perp	T	T	T	T	T	T
\perp	T	\perp	T	\perp	T	\perp
\perp	\perp	T	T	T	\perp	T
\perp	\perp	\perp	T	T	\perp	\perp

$I \rightarrow N$
2. $\begin{aligned} & (\sim K \vee D) \leftrightarrow N \\ & D \rightarrow \sim I\end{aligned} \quad$ is an invalid argument. Here's a row that makes all its premises true and its conclusion false:
$\therefore \sim I \rightarrow(N \rightarrow K)$

D	I	K	N	$I \rightarrow N$	$(\sim K \vee D) \leftrightarrow N$	$D \rightarrow \sim I$	$\sim I \rightarrow(N \rightarrow K)$
\top	\perp	\perp	\top	\top	\top	T	\perp

$(\sim O \rightarrow \sim S) \&(O \rightarrow(M \& \sim I))$
3. $\sim I \rightarrow \sim M$ is a valid argument. For the conclusion ' $\sim S$ ' to be false, we require ' S ' to be true. Now, $\therefore \sim S$
for the first premise of this argument to be true, its first conjunct ' $\sim O \rightarrow \sim S$ ' must be true. Hence, the antecedent ' $\sim O$ ' of this first conjunct must be false (since its consequent ' $\sim S$ ' has already been assumed to be false). So ' O ' must be true. But, if ' O ' is true, then in order for the second conjunct of the first premise to be true, its consequent ' $M \& \sim I$ ' must be true. This forces ' M ' to be true and ' I ' to be false. But, that forces the second premise ' $\sim I \rightarrow \sim M$ ' to be false. Therefore, there is no way to make both premises true while the conclusion is false, and the argument is valid.

Part Two: Page 66 I

1. Answer. $A \rightarrow B, B \rightarrow(C \vee D), \sim D \vDash A \rightarrow C$.
"Short Method" Explanation. For the conclusion ' $A \rightarrow C$ ' to be false, we require ' A ' to be true, and ' C ' to be false. For premise ' $\sim D$ ' to be true, we require ' D ' to be false. Therefore, for premise ' $B \rightarrow(C \vee D$) to be true we require its antecedent ' B ' to be false (since our assumptions so far already force its consequent ' $C \vee D$ ' to be false). But, all of this forces premise ' $A \rightarrow B$ ' to be false, which means it's impossible for all the premises of this sequent to be true while its conclusion is false. Therefore, the conclusion is a semantic consequence of the premises.
2. Answer. $A \vee(B \& C), C \vee(D \& E),(A \vee C) \rightarrow(\sim B \vee \sim D) \nRightarrow B \& D$.
"Short Method" Explanation. For the conclusion to be false at least one of ' B ' and ' D ' must be false, so at least one of ' A ' and ' C ' must be true if the first two premises are to be true. This means premise three ' $(A \vee C) \rightarrow(\sim B \vee \sim D)$ ' has a true antecedent, but its consequent is true anyway, so the conclusion is not a semantic consequence of the premises. Specifically, here is an interpretation that makes all the premises true and the conclusion false.

A	B	C	D	E	$A \vee(B \& C)$	$C \vee(D \& E)$	$(A \vee C) \rightarrow(\sim B \vee \sim D)$	$B \& D$
T	\perp	T	\perp	T	T	T	T	\perp

8. Answer. $(A \leftrightarrow B) \vee(B \leftrightarrow C) \nRightarrow A \leftrightarrow(B \vee C)$.
"Short Method" Explanation. For the conclusion to be false, either (a) ' A ' is true and ' $B \vee C$ ' is false, or (b) ' A ' is false and ' $B \vee C$ ' is true. In case (a) the premise is true since its second disjunct ' $B \leftrightarrow C$ ' is true (because ' B ' and ' C ' are both false), so the conclusion is not a semantic consequence of the premises. Specifically, here is an interpretation that makes all the premises true and the conclusion false.

$$
\begin{array}{ccc||c||c}
A & B & C & (A \leftrightarrow B) \vee(B \leftrightarrow C) & A \leftrightarrow(B \vee C) \\
\hline \top & \perp & \perp & \top & \perp
\end{array}
$$

