Page 19: Exercises 1, $3,5 \& 12$.

1. E: Van Gogh's pictures are the world's most valuable. P : Van Gogh's pictures are the world's most profound.
Final symbolization: $E \& \sim P$.
2. Same lexicon as in (1).

Final symbolization: $\sim E \& \sim P$.
5. D : Digital computers can simulate every aspect of human intelligence.
N : Neural networks can simulate every aspect of human intelligence.
E : Digital computers can simulate some aspects of human intelligence.
O : Neural networks can simulate some aspects of human intelligence.
Final symbolization: $(\sim D \& \sim N) \&(E \& O)$.
12. R : It rains.
P : It pours.
Final symbolization: $R \rightarrow P$. [also acceptable: anything equivalent, since the form is not obvious from the English sentence - e.g., $\sim(R \& \sim P)]$

Page 26: Exercises 2, $4,6 \& 16$.
2. T : It is Tuesday.
B : It is Belgium.
L : I'm lost.
Final symbolization: $(T \& \sim B) \rightarrow L$.
4. D : The economy declines.
C : There is a change of leadership.
R : There will be a recession.
Final symbolization: $D \rightarrow(\sim C \rightarrow R)$. [also acceptable: $D \rightarrow(C \vee R)$]
6. A : Applicants may examine their dossiers.
W : Applicants have already waived their right to examine their dossiers.
R : Applicants' referees approve.
Final symbolization: $A \rightarrow(\sim W \& R)$.
16. R : There is a right to smoke in public.
H : Smoking in public significantly affects the health of others.
Final symbolization: $(R \rightarrow \sim H) \& \sim \sim H$. [note: we want to stay as close to the English form as possible.]
Page 33: Exercises $1,5,10 \& 12$.

1. G : The government rigs the election.
R : There will be riots.
V : The government is guaranteed victory.
Final symbolization (argument): $G \rightarrow R, \sim G \rightarrow V, \sim G \rightarrow \sim V \therefore R$
2. K : I know I exist.
E : I exist.
H : I think.
N : I know I think.
Final symbolization (argument): $K \rightarrow E,(N \rightarrow K) \&(H \rightarrow N), H \therefore E$
3. N : At least two contestants enter.
C : There will be a contest.
W : There will be a winner.
E : All contestants perform equally well.
L : There is a loser.
Final symbolization (argument): $\sim N \rightarrow \sim C, \sim C \rightarrow \sim W, E \rightarrow \sim W, \sim L \leftrightarrow \sim W \therefore L \rightarrow(N \& \sim E)$
4. D : The Mayor is defeated.
S : Council members are involved in a financial scandal.
U : The urban middle class supports the Mayor.
Final symbolization (argument): $\sim D \rightarrow U, U \rightarrow \sim S \therefore D \leftrightarrow S$
Page 43, IV: 2 \& 6
5. This is an erroneous usage of scare quotes. 'Rome' is not the largest city in Italy, since 'Rome' a word, not a city.
6. This is a correct usage of selective (corner) quotes. It's a true (metatheoretic) statement. [If we had used scare quotes here instead, then that would have been a mistake, since ' $\sim p$ ' is not a wff of LSL, because there are only upper case letters in LSL.]
Page 57, I: 1 \& 5
7. Truth-Table for ' $A \rightarrow(B \rightarrow(A \& B)$)' (main connective in red):

A	B	A	\rightarrow	$(B$	\rightarrow	$(A$	$\&$	$B))$
\top	\top	\top	\top	T	T	T	T	T
T	\perp	T	T	\perp	T	T	\perp	\perp
\perp	T	\perp	T	T	\perp	\perp	\perp	T
\perp	\perp	\perp	T	\perp	T	\perp	\perp	\perp

$\therefore ' A \rightarrow(B \rightarrow(A \& B))$ ' is tautological (it is true on all interpretations).
5. Truth-Table for ' $((F \& G) \rightarrow H) \rightarrow((F \vee G) \rightarrow H)$ ' (main connective in red):

F	G	H	$((F$	$\&$	$G)$	\rightarrow	$H)$	\rightarrow	$((F$	\vee	$G)$	\rightarrow	$H)$
T	T	T	T	T	T	T	T	T	T	T	T	T	T
T	T	\perp	T	T	T	\perp	\perp	T	T	T	T	\perp	\perp
T	\perp	T	T	\perp	\perp	T	T	T	T	T	\perp	T	T
T	\perp	\perp	T	\perp	\perp	T	\perp	\perp	T	T	\perp	\perp	\perp
\perp	T	T	\perp	\perp	T	T	T	T	\perp	T	T	T	T
\perp	T	\perp	\perp	\perp	T	T	\perp	\perp	\perp	T	T	\perp	\perp
\perp	\perp	T	\perp	\perp	\perp	T	T	T	\perp	\perp	\perp	T	T
\perp	\perp	\perp	\perp	\perp	\perp	T	\perp	T	\perp	\perp	\perp	T	\perp

\therefore ' $((F \& G) \rightarrow H) \rightarrow((F \vee G) \rightarrow H)$ ' is contingent (it is true on some interpretations, false on others).

Page 58, II

II. Truth-Tables for the sentences in question (main connectives in red):

	A	B	A	\checkmark	B		A	B			\rightarrow	B		A	B	\sim	(A	\&	\sim	B)		
	T	T	T	T	T		T	T			T	T		T	T	T	T	\perp	\perp	T		
(1)	T	\perp	T	T	\perp	(2)	T	\perp		T	\perp	\perp	(3)	T	\perp	\perp	T	T	T	\perp		
	\perp	T	\perp	T	T		\perp	T			T	T		\perp	T	T	\perp	\perp	\perp	T		
	\perp	\perp	\perp	\perp	\perp		\perp	\perp			T	\perp		\perp	\perp	T	\perp	\perp	T	\perp		
	A	B	\sim	(A	\&		B)			A	B	\sim	A	v	B						
	T	T	T	\perp	T	\perp	\perp	T			T	T	\perp	T	T	T		A	\sim	A	\checkmark	A
(4)	T	\perp	T	\perp	T	\perp	T	\perp		(5)	T	\perp	\perp	T	\perp	\perp	(6)	T	\perp	T	T	T
	\perp	T	T	T	\perp	\perp	\perp	T			\perp	T	T	\perp	T	T		\perp	T	\perp	T	\perp
	\perp	\perp	\perp	T	\perp	T	T	\perp			\perp	\perp	T	\perp	T	\perp						
	A	(A	\rightarrow	(A	\&	\sim	A)		\rightarrow	\sim	A											
(7)	T	T	\perp	T	\perp	\perp	T		T	\perp	T											
	\perp	\perp	T	\perp	\perp	T	\perp		T	T	\perp											

Therefore, we have the following equivalences:

- (6) and (7) are equivalent.
- (1) and (4) are equivalent.
- (2), (3), and (5) are equivalent.

Page 58, III
III. No, if p is not a tautology, it does not follow that ${ }^{\ulcorner } \sim p^{\top}$ is a tautology. This is equivalent to the metatheoretic question: "If $\neq p$, then does it follow that $\vDash \sim p$?". There are LSL sentences such that both $\neq p$ and $\not \vDash \sim p$. Any atomic wff (e.g., 'A') will do. More generally, any contingent sentence p will, by definition, be such that both $\neq p$ and $\not \vDash \sim p$.

